首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The thermal properties of the Cu(II), Ni(II) and Co(II) complexes of iminodiacetic acid (H2IMDA) were determined using TG, DTG and DSC techniques. The complexes, of general formula, MIMDA-2H2O evolved water of hydration from 50 to 150°C which was followed by the decomposition of the anhydrous complex in the 250 to 400°C temperature range. The thermal stability, as determined by procedural decomposition temperatures, was: Ni(II) >Co(II) >Cu(II). The thermal stability is discussed in terms of IR spectra, ΔH, and ΔS, as well as thermal data.  相似文献   

2.
Experiments were performed on calcium oxide, using water vapor with N2 or CO2 as carrier gases, between 40 and 70 °C. A initial experiment was performed with water vapor in the presence of N2 to elucidate the possible hydroxylation process produced by water vapor exclusively. On the other hand, when CO2 was used as carrier gas the CaO reactivity changed, producing different hydrated, hydroxylated, and carbonated phases. On the basis of these results and the fact that under dry conditions CO2 is not absorbed on CaO at T < 70 °C, a possible CaO–H2O–CO2 reaction mechanism was proposed, where CaO superficial hydroxylation process seems to play a very important role during the CO2 capture. Finally, a kinetic analysis was produced to compare the temperature and humidity relative influence on the whole process.  相似文献   

3.
The present work investigates experimentally the effect of H2O vapor on the removal of NO at elevated temperatures. Breakdown voltage, discharge characteristics and NO removal efficiency were studied under various conditions of water vapor content. The experimental results indicate H2O can greatly enhance the NO removal efficiency from a NO/O2/N2/C2H4/H2O system, but the breakdown voltage increases as the relative humidity of the gas increases. Moreover, the effect of temperature on NO removal at a relative gas humidity of 30 % was analyzed. With an increase in temperature, E/N increased, producing more active species and energetic electrons; electron detachment also became significant at high temperature and the rates of major reactions were promoted, intensifying the conversion of NO.  相似文献   

4.
A study was carried out on the mechanism of electrical conductivity percolation of H2O/C16EO20/n-butanol/heptane microemulsions. Electrical conductivity, UV-vis spectroscopy and FTIR spectra were used to study the diluted “dry” microemulsions with the mass ratio of C16EO20/n-butanol/heptane = 3:3:4. The results of electrical conductivity showed that the percolation occurred around φw = 20 wt% and the transition of w/o microemulsions to bicontinueous microemulsions happened when φw = 45 wt%. From the UV-vis absorption spectra, it was found that the absorption of methyl orange (MO) in microemulsions shifted red than that of in oil phase, but the maximal absorption peak (λmax) remained unchanged when φw > 20 wt%. It implied that the position of MO solubilized in microemulsions was unvaried after free water appeared in the core. FTIR spectra revealed that the OH band of water in microemulsions moved to high frequency at low φw (< 20 wt%) and became broader at high φw. It indicated that the added water only caused the hydration of EO at low φw, the hydration completed when φw > 20 wt% and then the residual water entered into the core with properties similar to bulk water. The presence of free water as ions exchange medium will cause the electrical conductance increased. The percolation appeared after the hydration of EO completed.  相似文献   

5.
The low temperature formation of crystalline zinc oxide via thermal decomposition of zinc acetylacetonate monohydrate C10H14O4Zn·H2O was studied by humidity controlled thermal analysis. The thermal decomposition was investigated by sample-controlled thermogravimetry (SCTG), thermogravimety combined with evolved gas analysis by mass spectrometry (TG-MS) and simultaneous differential scanning calorimetry and X-ray diffractometry (XRD-DSC). Decomposition of C10H14O4Zn·H2O in dry gas by linear heating began with dehydration around 60°C, followed by sublimation and decomposition above 100°C. SCTG was useful because the high-temperature parallel decompositions were inhibited. The decomposition changed with water vapor in the atmosphere. Formation of ZnO was promoted by increasing water vapor and could be synthesized at temperatures below 100°C. XRD-DSC equipped with a humidity generator revealed that C10H14O4Zn·H2O decomposed directly to the crystalline ZnO by reacting with water vapor.  相似文献   

6.
Fish mince-based films were studied as a function of equilibrium relative humidity and temperature conditions. The sigmoid-shape adsorption isotherm curves were typical of high protein content material and were adequately described, irrespective of temperature, by the Guggenheim-Anderson-de Boer equation. A plasticizing effect of water related to rapid changes in the functional properties was mainly noted at the highest aw and explained by the disruptive water-polymer hydrogen bonding theory. Relatively sharp decreases in force at break, elastic modulus and water vapor barrier properties, and increases in deformation at break were observed at temperature-dependent relative humidities; this relative humidity was reduced by increasing the temperature. The temperature dependence of the hydration effect on functional properties could be explained by the glass transition theory.  相似文献   

7.
The thermal analyses and the water state diagrams of agavin and inulin were investigated. The thermogravimetric analysis and differential scanning calorimetry (DSC) were used to know the difference between fructans. Linear inulin (220.0 °C) showed a higher thermal stability than the branched agavins (206.7 °C). The samples displayed different physical states and lightness depending on the water activity of storage (a w). The agavin showed different physical states: powder (a w < 0.33), soft lump (a w ≈ 0.43), sticky (0.55 < a w < 0.77), and liquid (a w > 0.85), while inulin showed two physical states: an amorphous powder at a w < 0.55 and a semicrystalline solid at a w > 0.69. These physical states decreased the lightness of fructans. The GAB equation and the Gordon–Taylor equation showed a good fit to the experimental data (R 2 > 0.95). The K constant of GAB equation predicted a lower water affinity of inulin powder, while the agavin powder presented a higher water affinity. The DSC showed a glass transition temperature of 118.1 and 135.3 °C for agavin and inulin anhydrous powders, respectively. An increase in water content in agavin showed a higher depression in the glass transition temperature than in inulin. Also, the inulin exhibited a melting point while agavin not. The water state diagrams showed the critical water activity at which the agavin (0.50) and inulin (0.59) powders were stable to physical changes. This knowledge is used to understand the physical and structural behaviors of agavin and inulin at the different water activities.  相似文献   

8.
The effect of atmospheric water vapor on the kinetic rate behavior of the thermal decomposition of copper(II) carbonate hydroxide, Cu2CO3(OH)2, was investigated by means of TG-DTA coupled with a programmable humidity controller. With increasing water vapor pressure p(H2O) from 0.8 to 10.6 kPa, a systematic reduction of the reaction temperature of the thermal decomposition was observed as the continuous trend from the previous works at the lower p(H2O). Through a comparative kinetic analysis of the reaction at different p(H2O), a catalytic action of the atmospheric water vapor on the nucleation process at the first half of the reaction was identified as the possible origin of the reduction of the reaction temperature.  相似文献   

9.
The influences of combinative effect of temperature and humidity on the thermal stabilities of three pyrotechnic compositions are investigated in the study. The thermal behavior for each pyrotechnic is analyzed by SETARAM thermal analyzer. Activation energy is determined by Kissinger method and critical temperature of thermal explosion (T b) of pyrotechnic compositions is also calculated. The results of thermal analysis revealed that relative humidity could decrease the thermal stability of pyrotechnic mixtures. The critical temperature of thermal explosion (T b) of each pyrotechnics decreased as the relative humidity increasing. Based on the value of T b, the thermal stabilities of the pyrotechnic mixtures are in the order of Sr(NO3)2/Mg4Al3/PVC/PF > Sr(NO3)2/SrCO3/KClO4/Mg4Al3/PVC/PF > Sr(NO3)2/KClO4/Mg4Al3/PVC/PF. The thermal stability of Sr(NO3)2/Mg4Al3/PVC/PF show the best thermal stability than other two mixtures whether it is in the condition of humidity or not.  相似文献   

10.
The isothermal heat of hydration of MgSO4 hydrates was studied by humidity controlled calorimetry. Two hydrates, starkeyite (MgSO4·4H2O) and a mixture of MgSO4 hydrates with summary 1.3 mol H2O were investigated. The solid-gas reactions were initiated at 30°C and 85% relative humidity. The heat of hydration was determined in a circulation cell in the calorimeter C80 (Setaram). The crystal phases formed after the hydration process were analyzed by thermogravimetry (TG) and X-ray powder diffraction (XRD). Starkeyite reacted with the water vapour to the thermodynamic stable epsomite and the MgSO4 hydrate mixture with 1.3 mol water to hexahydrite. The hydration heats of starkeyite and the mixture were determined to be −169±3 and −257±5 kJmol−1, respectively.  相似文献   

11.
A proton-conducting metal–organic framework (MOF), {[Cu4(dpdo)12][H(H2O)27(CH3CN)12][PW12O40]3}n (where dpdo is 4,4′-bipyridine-N,N′-dioxide) (1), was synthesized by the reaction of CuHPW12O40·nH2O and dpdo at room temperature. Single-crystal X-ray diffraction analysis at 293?K revealed that 1 crystallized in the cubic space group Im-3 and presented a non-interwoven 3-D framework with cubic cavities and guest molecules. A large ionic water cluster H+(H2O)27, consisting of a water shell (H2O)26 and an encaged H+(H2O) as a center core, was trapped in the cubic cavity of the MOF {[Cu4(dpdo)12(PW12O40)3]?}. Thermogravimetric analysis suggests that 1 has high thermal stability, indicating that such a non-interwoven 3-D framework with cubic cavities is a suitable host for researching protonated water clusters. Its water vapor adsorption isotherm at room temperature and pressure shows that the water vapor adsorbed in it was 65.1 cm3?g?1 at the maximum allowable humidity. It exhibits good proton conductivities of 10?5–10?4?S?cm?1 at 100 °C in the relative humidity range 35–98%.  相似文献   

12.
Electrochemical characteristics of single cell performances at various humidity conditions and constant temperatures of 40?100 °C using membrane electrode assemblies (MEAs) were studied. The MEAs consist of alternative proton-conducting hybrid membrane electrolyte and noble Pt/C catalyst for the H2/O2 proton exchange membrane fuel cells (PEMFCs). The function of humidity on the cell performances was investigated at larger current density values of 501 mA cm?2 and constant cell temperatures of 80 and 90 °C and the relative humidity of 100 %. The power density value of 400 mW cm?2 was obtained when the same MEA at similar operating conditions was used. The effects of temperature on the single cell performances were investigated at various temperature ranges of 40–100 °C and constant relative humidity of 50, 70, and 100 %. The maximum current density and power density values of about 600 mA cm?2 and 160 mW cm?2, respectively, were obtained at 90 °C with 100 % RH. The results were compared with the reported results of Nafion membrane and similar hybrid membranes operating at low temperatures for H2/O2 fuel cells. Finally, the results provided an alternative proton-conducting electrolyte as promising candidate for low/intermediate temperature operating H2/O2 fuel cells.  相似文献   

13.
Computer simulation has been employed to study the effect of a confined space of a planar model pore with structureless hydrophobic walls on the hydration of Na+Cl ion pairs in water vapor at room temperature. A detailed many-body model of intermolecular interactions has been used. The model has been calibrated relative to experimental data on the free energy and enthalpy of the initial reactions of water molecule attachment to ions and the results of quantum-chemical calculations of the geometry and energy of Na+Cl (H2O)N clusters in stable configurations, as well as spectroscopic data on Na+Cl dimer vibration frequencies. The free energy and work of hydration, as well as the adsorption curve, have been calculated from the first principles by the bicanonical statistical ensemble method. The dependence of hydration shell size on interionic distance has been calculated by the method of compensation potential. The transition between the states of a contact (CIP) and a solvent-separated ion pair (SSIP) has been reproduced under the conditions of a nanopore. The influence of the pore increases with the hydration shell size and leads to the stabilization of the SSIP states, which are only conditionally stable in bulk water vapor.  相似文献   

14.
Meryem Sakizci 《Adsorption》2013,19(6):1083-1091
The adsorption of ethylene (C2H4) on sepiolite from Eski?ehir, Turkey and on its salt modified forms (NaS, KS, CaS and MgS) and treated with 1, 3 and 5 M HCl solutions (SH, S3H and S5H) was investigated. The sepiolite samples were characterized using X-ray diffraction, X-ray fluorescence, thermogravimety, differential thermal analysis and N2 adsorption methods. The C2H4 adsorption isotherms of all clay samples were obtained at 20 °C up to 37 kPa. The uptake of C2H4 decreased as HS > CaS > NaS > S > MgS > KS > H3S > H5S for sepiolite samples. Capacity of sepiolites for C2H4 ranged from 0.478 to 0.622 mmol/g. It was found that the adsorbed amount of C2H4 on sepiolite samples decreased with increasing acid concentrations.  相似文献   

15.
A detailed thermal analysis of iron and cobalt surfactant complexes of the type [M(CH3COO)4]2?[C12H25NH3 +]2 has been carried out using Thermogravimetric (TG) analysis at different heating rates (i.e., 5, 10, 15, and 20 °C min?1). It has been observed that iron complex decomposes by a different mechanism compared to other transition metal complexes. Metal is the final product instead of metal oxide. Combining the results from our previous study, first row transition metal complexes exhibit an order of stability in agreement with the famous Irving Williams series, i.e., the apparent activation energy, E for thermal decomposition varies as: E Fe > E Co < E Ni < E Cu > E Zn (exception being iron because of different decomposition mechanism). Thermal decomposition parameters have been measured and compared using the multiple heating rate method of Flynn–Wall–Ozawa. Further, molecular modeling calculations have been carried out to compare the experimental TG data with theoretical computations for the synthesized metal surfactant complexes. Minimum energy optimized structures for the complexes have been obtained using Gaussian software.  相似文献   

16.
The sensitivity (response) of six semiconducting metal oxide (SMO) structures on the basis of SnO2 to water vapor was studied in dry and humid air over the H2O vapor concentration range 0–2.9 vol % (0–100% RH) as the temperature of the samples changed from 200 to 600°C. The temperature dependence of the conductivity and response of SMOs to H2O vapor had extrema at 300–400 and 250–400°C, respectively, and the sensitivity to water vapor did not decrease below 1.7–1.9 up to 600°C. Data on changes in the conductivity of SMOs and the number of OH groups in the oxygen-hydroxyl layer on the surface of SMOs depending on temperature and air humidity were obtained. A sharp change in conductivity as air humidity increased from 0 to 10% RH could be related to either a sharp change in the number of OH groups in the oxygen-hydroxyl layer because of the high polarity of water molecules or a decrease in the intergrain energy barrier. The phenomena observed and the behavior of SMO conductivity in dry and humid air were interpreted. The experimental data were used to suggest a mechanism of the formation of hydroxyl groups on the surface of SMOs. The paper contains practical recommendations concerning the temperature conditions under which the influence of humidity on changes in the conductivity of SMOs is weakest.  相似文献   

17.
Water molecules in the polymer hydration shell known as bound water lose their mobility in comparison with unperturbed water. This effect was quantified by absorption measurements in the millimeter-wave range of microwaves (1–10 mm, 30–300 GHz). Hydration measurements were performed for poly(N-vinylcaprolactam) (PNVCL) and copolymers of N-vinylcaprolactam (NVCL) and N-vinylimidazol (NVIA). The association of hydrophobic groups in PNVCL upon coil-to-globule transition was found to cause a decrease in the relative hydration number, which is the relative amount of bound water per solute molecule as measured by microwave method at 31 GHz. Millimeter-wave hydration measurements were confirmed by the determinations of specific heat capacity (c p) with differential scanning calorimetry. Hydration determinations of NVCL/NVIA copolymers revealed that they associate via hydrophobic clustering with a decrease in hydration of hydrophobic groups.  相似文献   

18.
Although the literature presents intensive studies based on monitoring cement hydration in adiabatic and semi-adiabatic environments, such as non-conventional differential thermal analysis (NCDTA) systems, studies of cement hydration in controlled climatic chambers are very rare. Using three W/C ratios (0.5, 0.6 and 0.7) and three relative humidity conditions (60, 80 and 100%) at 25 °C, the authors analyzed in real time the evolution of cement hydration reaction during the first 24 h in an environmental-controlled chamber. The main objective of this paper is to present two new developed systems of NCDTA (NNCDTA) and non-conventional TG and to show, using high-strength sulfate-resistant Portland cement pastes in a controlled chamber as application examples, how the developed systems measure on real time the thermal effects and the mass changes that occur during hydration and carbonation reactions. The captured CO2 mass can be quantified as it occurs by carbonation curves. The results are in agreement with the mechanical and structural properties of the used pastes and with their TG/DTG data, after being processed by different operational conditions. Carbonation for 24 h alters significantly the cement hydrated paste composition, resulting in final poor mechanical resistance properties. However, carbonation for 1 h, in specific conditions, enhances them when compared to a non-carbonated reference paste, due to a final higher content of silica and alumina hydrated phases and to a lower mass ratio between that of their combined water and their total mass as well.  相似文献   

19.
Good quality adsorbent fabrics were electrospun from slurries of zirconium hydroxide nanoparticles and polyvinyl butyral (PVB) in alcohols. The as-spun fabrics had very high porosity, about 80 vol%, and high zirconium hydroxide content, 50–95 wt%. The porosity and mechanical strength of the fabrics could be modified via compaction and/or exposure to alcohol vapor. SO2 sorption capacity of the fabrics was high at 1.6–1.9 mol/kg and was relatively independent of the sample pretreatment, unlike the capacity of the pristine nanoparticles, which decreased when the powder was stored in a low relative humidity atmosphere. The as-purchased zirconium hydroxide nanoparticles contained about 45 wt% of water, equivalent to the formula ZrO2·5.6H2O. In contrast, the electrospun composite fabrics contained only 25 wt% of mostly coordinated water, leading to the formula ZrO2·2.2H2O. The presence of PVB binder inhibited the rehydration/dehydration processes and stabilized the SO2 sorption capacity of the composite fibers. The electrospun fabrics could find applications as conformable, flexible filters in civilian and military applications.  相似文献   

20.
The results of a theoretical study of the reaction mechanism for the neutral hydration of ketene, H2C=C=O + (n + 1) H2O → CH3COOH + nH2O (n = 0–4), in solution are presented. All structures were optimized and characterized at the MP2(fc)/6-31 + G* level of theory, and then re-optimized by MP2(fc)/6-311 ++G**, and the effect of the bulk solvent is taken into account according to the conductor-like polarized continuum model (CPCM) using the gas MP2(fc)/6-311 ++G** geometries. Energies were refined for five-water hydration at higher level of theory, QCISD(T)(fc)/6-311 ++G**//MP2(fc)/6-311 ++G**. In the combined supermolecular/continuum model, one water molecule directly attacks the central C-atom, and the other four explicit water molecules are divided into two groups, one acting as catalyst(s) by participating in the proton transfer to reduce the tension of proton transfer ring, and the other being placed near the non-reactive oxygen or carbon atom in order to catalyze the hydration by engaging in hydrogen-bonding to the substrate (the so-called cooperative effect). Between the two possible nucleophilic addition reactions of water molecule, across the C=O bond or the C=C bond, the former one is preferred. Our calculations suggest that the favorable hydrolysis mechanism of ketene involves a sort of eight-membered ring transition structure formed by a three-water proton transfer loop, and a cooperative dimeric water near the non-reactive carbon-atom. The best-estimated in the present paper for the rate-determining barrier in solution, $ \Updelta G_{\text{sol}}^{ \ne } $ (298 K), is about 58 kJ/mol, reasonably close to the available experimental result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号