首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Photoaffinity labeling enables the direct probing of a target protein through a covalent bond between a ligand and its binding protein, and even a complex formed by weak interactions can be isolated by the method. The photochemical fishing approach accelerates the throughput, isolating crosslinked complexes and analyzing the structure of the ligand binding site within the protein. We used carbene-generating phenyldiazirine for this approach because practical examinations had shown that the phenyldiazirine functioned as the powerful barb on the hook. Improving the synthetic pathways of the photoprobes and using chemoselective-integrated photoreactive units makes possible the easy and rapid preparation of carbene-generating photoreactive probes including the derivatives in peptides, proteins, DNAs, and carbohydrates. This review also shows several recent impacts of photoaffinity labeling, including the in vivo preparation of photoreactive proteins in living cells.  相似文献   

2.
A genetically encoded, multifunctional photocrosslinker was developed for quantitative and comparative proteomics. By bearing a bioorthogonal handle and a releasable linker in addition to its photoaffinity warhead, this probe enables the enrichment of transient and low‐abundance prey proteins after intracellular photocrosslinking and prey–bait separation, which can be subject to stable isotope dimethyl labeling and mass spectrometry analysis. This quantitative strategy (termed isoCAPP) allowed a comparative proteomic approach to be adopted to identify the proteolytic substrates of an E. coli protease–chaperone dual machinery DegP. Two newly identified substrates were subsequently confirmed by proteolysis experiments.  相似文献   

3.
合成了一种光活性标记分子-对叠氮苯甲酸,将其偶联到具有双羟基的碳酸酯与乳酸的共聚物P (LA-co-DHP)上,获得了具有光反应活性的可生物降解共聚物P(LA-co-DAP),在光照条件下,可以将蛋白质方便快捷地共价偶联到P(LA-co-DHP)聚合物纤维上.在溶液中进行PEG与对叠氮苯甲酸的光照反应,通过核磁共振光谱...  相似文献   

4.
A simple and versatile approach for the preparation of carbohydrate photoprobes has been developed. By a single-step reaction at 37 degrees C, a biotinylated carbene-generating unit was introduced to the reducing end of unprotected carbohydrates. Micromole quantities of N-acetyllactosamine, Lewis X trisaccharide, and sialyl Lewis X tetrasaccharide were easily converted to their biotinylated photoreactive analogues, which enabled the nonradioisotopic chemiluminescent detection of the photolabeled products. Thus, a sequence of lectin photoaffinity labeling, from the probe synthesis to the detection of labeled protein, was readily accomplished within one week. Our strategy may be applicable to any aldehyde-bearing ligand.  相似文献   

5.
A photoaffinity labeling (PAL)‐based method for the rapid identification of target proteins is presented in which a high‐performance chemical tag, an isotope‐coded fluorescent tag (IsoFT), can be attached to the interacting site by irradiation. Labeled peptides can be easily distinguished among numerous proteolytic digests by sequential detection with highly sensitive fluorescence spectroscopy and mass spectrometry. Subsequent MS/MS analysis provides amino acid sequence information with a higher depth of coverage. The combination of PAL and heterogeneous target‐selecting techniques significantly reduces the amount of time and protein required for identification. An additional photocleavable moiety successfully accelerated proteomic analysis using cell lysate. This method is a widely applicable approach for the rapid and accurate identification of interacting proteins.  相似文献   

6.
Although aryl(trifluoromethyl)diazirines have achieved great popularity in photoaffinity labeling applications, the properties of the corresponding carbenes have not been as widely explored. Here, low-temperature matrix-isolation spectroscopy and reactivity studies indicate that in contrast to m-methoxyphenyl(trifluoromethyl)carbene and most known aryl(CF(3))carbenes, the para isomer is a ground-state singlet rather than triplet. DFT calculations support these results as well as the notion that the p-CH(3)O group stabilizes the singlet carbene via resonance. These results may have relevance to the wide range of substituted aryl(CF(3))diazirines in photoaffinity applications.  相似文献   

7.
[structure: see text] The lobatamides and related salicylate enamide natural products are potent mammalian V-ATPase inhibitors. To probe details of binding of the lobatamides to mammalian V-ATPase, three photoactivatable analogues bearing benzophenone photoaffinity labels have been prepared. The analogues were designed on the basis of a simplified acyclic analogue 2. Late-stage installation of the enamide side chain and tandem deallylation/amidation were employed in synthetic routes to these derivatives. Simplified analogue 2 showed strong inhibition against bovine clathrin-coated vesicle V-ATPase (10 nM). Analogues 3-5 were also evaluated for inhibition of bovine V-ATPase in order to select a suitable candidate for future photoaffinity labeling studies.  相似文献   

8.
The first effective method for the introduction of a versatile substituent on 3-phenyl-3-trifluoromethyldiazirine has been developed. The simple preparation of a useful aldehyde intermediate allows easy access to various elaborated photoaffinity ligands, including a l-phenylalanine analog bearing a diazirine ring (TmdPhe). The asymmetric synthesis of TmdPhe was easily accomplished in gram quantities. Site-directed incorporation of this compound into the structure of a calmodulin-binding peptide using automated peptide synthesis afforded a photoreactive peptide that was successfully used for the specific labeling of calmodulin.  相似文献   

9.
10.
Abstract— Photochemical reactions of 6-azidocoumarin and 7-azido-4-methylcoumarin in the presence of secondary amines have been investigated for their potential applications in photoaffinity labeling. It was found that the singlet nitrene generated from 6-azidocoumarin isomerized to a dehydroazepine intermediate that reacted with an amine to yield two isomeric adducts. Photolysis of 7-azido-4-meth-ylcoumarin, in contrast, gave a triplet nitrene that abstracted hydrogen atoms from secondary amine molecules to form 7-amino-4-methylcoumarin as the major product. The difference in the intersystem crossing rate between the two compounds originates from the azido position relative to the carbonyl group. Because of its ability to form a covalent linkage with a nucleophile, 6-azidocoumarin is deemed to have a greater potential as a photoaffinity label than 7-azido-4-methylcoumarin.  相似文献   

11.
Investigation of receptor—ligand interactions remains an inexhaustible challenge for chemists and biologists. Structural exploration of biological receptors is the starting point for a better understanding of how they function. Photoaffinity labeling is a biochemical approach to identify and characterize receptors targeting further structural investigations. The primary structure of a receptor protein was typically obtained by reverse genetics after exhaustive purification and sequencing of the N-terminal peptide, which allowed the design of the corresponding oligonucleotide probes. Synthesis of these oligonucleotide probes then led to identification of cDNA clones by hybridization. Following this strategy, several membrane neurotransmitter receptors and constituent polypeptides, present in very small quantities in the central nervous system, were identified and their sequence deduced from the cDNA sequence. Since photoaffinity labeling implies the formation of a covalent bond between a radiolabeled ligand analogue and a receptor binding site, it becomes theoretically possible to isolate and sequence radiolabeled peptides and then synthesize the corresponding oligonucleotide probes. Photoaffinity labeling might avoid the critical solubilization and purification steps of the classical approach. To our knowledge, no such example of primary structure determination based on photoaffinity labeling experiments has been reported. However, the extraordinary developments in gene cloning technologies, in particular homology cloning and expression cloning, have made this approach obsolete and raised the question of new perspectives for photoaffinity labeling technology. In this article we present an update on selected original developments, as well as new challenges for this method. Photoaffinity labeling not only gives access to structural elements but is also a potential tool for the investigation of functional aspects of biological receptors, for example their role in signal transduction mechanisms.  相似文献   

12.
A new general method, post-photoaffinity-labeling modification (PPALM), for constructing fluorescent saccharide biosensors based on naturally occurring saccharide-binding proteins, lectins, is described in detail. An active-site-directed incorporation of a masked reactive site into a lectin was conducted by using a photoaffinity labeling technique followed by demasking and then chemical modification to yield a fluorescent lectin. Two photoaffinity labeling reagents were designed and synthesized in this study. The labeling reagent with a photoreactive site appended through a disulfide link to a mannoside unit was bound to the saccharide-binding pocket of the lectin concanavalin A (Con A). After light irradiation, the mannoside unit was cleaved by reduction. The unique thiol group thus produced was site-specifically modified with various fluorescent groups (dansyl, coumarin, or dimethylaminobenzoate derivatives) to afford fluorescent Con As. The labeling site was characterized by protease-catalyzed digestion followed by HPLC, MALDI-TOF MS, and tandem mass-mass spectrometry; these methods indicated that the photolabeling step is remarkably site specific. Strong fluorescence was observed in the engineered Con A with a fluorophore, and the emission changed sensitively upon saccharide complexation. The binding constants for various saccharides were determined by fluorescence titration and demonstrated that the binding selectivity and affinity of the engineered Con As are comparable to those of native Con A. The red shift of the emission maximum, the decrease in the fluorescence anisotropy of the dansyl unit, and the increase in the twisted intramolecular charge transfer emission caused by sugar binding to the engineered Con A explicitly indicate that the microenvironment of the appended fluorophores changes from a restricted and relatively hydrophobic environment into a rather freely mobile and hydrophilic environment.  相似文献   

13.
The modification of proteins with synthetic probes is a powerful means of elucidating and engineering the functions of proteins both in vitro and in live cells or in vivo. Herein we review recent progress in chemistry‐based protein modification methods and their application in protein engineering, with particular emphasis on the following four strategies: 1) the bioconjugation reactions of amino acids on the surfaces of natural proteins, mainly applied in test‐tube settings; 2) the bioorthogonal reactions of proteins with non‐natural functional groups; 3) the coupling of recognition and reactive sites using an enzyme or short peptide tag–probe pair for labeling natural amino acids; and 4) ligand‐directed labeling chemistries for the selective labeling of endogenous proteins in living systems. Overall, these techniques represent a useful set of tools for application in chemical biology, with the methods 2–4 in particular being applicable to crude (living) habitats. Although still in its infancy, the use of organic chemistry for the manipulation of endogenous proteins, with subsequent applications in living systems, represents a worthy challenge for many chemists.  相似文献   

14.
With the advent of single‐molecule methods, chemoselective and site‐specific labeling of proteins evolved to become a central aspect in chemical biology as well as cell biology. Protein labeling demands high specificity, rapid as well as efficient conjugation, while maintaining low concentration and biocompatibility under physiological conditions. Generic methods that do not interfere with the function, dynamics, subcellular localization of proteins, and crosstalk with other factors are crucial to probe and image proteins in vitro and in living cells. Alternatives to enzyme‐based tags or autofluorescent proteins are short peptide‐based recognition tags. These tags provide high specificity, enhanced binding rates, bioorthogonality, and versatility. Here, we report on recent applications of multivalent chelator heads, recognizing oligohistidine‐tagged proteins. The striking features of this system has facilitated the analysis of protein complexes by single‐molecule approaches.  相似文献   

15.
Tomohiko Fujii 《Tetrahedron》2005,61(33):7874-7893
Circadian rhythmic plant leaf-movement, called nyctinasty, is controlled by a time-course change in the internal concentration of the leaf-movement factor in the plant body. We revealed that specific binding proteins (210 and 180 kDa) for the leaf-movement factor, potassium lespedezate (1), are contained in the plasma membrane of the plant motor cell by using novel synthetic photoaffinity probes. These proteins are localized on the motor cell in the plant body, and would be potential receptors for the leaf-movement factor to control the leaf-movement. Our study is a rare successful result of the detection of membrane receptors by using a synthetic photoaffinity probe designed on a biologically active natural product. And these results also advance a guideline for probe design towards successful photoaffinity labeling.  相似文献   

16.
Rapid, site-specific labeling of proteins with diverse probes remains an outstanding challenge for chemical biologists. Enzyme-mediated labeling approaches may be rapid but use protein or peptide fusions that introduce perturbations into the protein under study and may limit the sites that can be labeled, while many "bioorthogonal" reactions for which a component can be genetically encoded are too slow to effect quantitative site-specific labeling of proteins on a time scale that is useful for studying many biological processes. We report a fluorogenic reaction between bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) and tetrazines that is 3-7 orders of magnitude faster than many bioorthogonal reactions. Unlike the reactions of strained alkenes, including trans-cyclooctenes and norbornenes, with tetrazines, the BCN-tetrazine reaction gives a single product of defined stereochemistry. We have discovered aminoacyl-tRNA synthetase/tRNA pairs for the efficient site-specific incorporation of a BCN-containing amino acid, 1, and a trans-cyclooctene-containing amino acid 2 (which also reacts extremely rapidly with tetrazines) into proteins expressed in Escherichia coli and mammalian cells. We demonstrate the rapid fluorogenic labeling of proteins containing 1 and 2 in vitro, in E. coli , and in live mammalian cells. These approaches may be extended to site-specific protein labeling in animals, and we anticipate that they will have a broad impact on labeling and imaging studies.  相似文献   

17.
The elucidation of substrate–protein interactions is an important component of the drug development process. Due to the complexity of native cellular environments, elucidating these fundamental biochemical interactions remains challenging. Photoaffinity labeling (PAL) is a versatile technique that can provide insight into ligand-target interactions. By judicious modification of substrates with a photoreactive group, PAL creates a covalent crosslink between a substrate and its biological target following UV-irradiation. Among the commonly employed photoreactive groups, diazirines have emerged as the gold standard. In this Minireview, recent developments in the field of diazirine-based photoaffinity labeling will be discussed, with emphasis being placed on their applications in chemical proteomic studies.  相似文献   

18.
Glycan recognition by glycan-binding proteins is central to the biology of all living organisms. The efficient capture and characterization of relatively weak non-covalent interactions remains an important challenge in various fields of research. Photoaffinity labeling strategies can create covalent bonds between interacting partners, and photoactive scaffolds such as benzophenone, diazirines and aryl azides have proved widely useful. Since their first introduction, relatively few improvements have been advanced and products of photoaffinity labeling remain difficult to detect. We report a fluorinated azido-coumarin scaffold which enables photolabeling under fast and mild activation, and which can leave a fluorescent tag on crosslinked species. Coupling this scaffold to an α-fucoside, we demonstrate fluorogenic photolabeling of glycan-protein interactions over a wide range of affinities. We expect this strategy to be broadly applicable to other chromophores and we envision that such “fluoro-crosslinkers” could become important tools for the traceable capture of non-covalent binding events.  相似文献   

19.
The combination of photoaffinity labeling (PAL) with modern mass spectrometric techniques is a powerful approach for the characterization of peptide–protein interactions. Depending on the analytical strategy applied, a PAL experiment can provide different levels of information ranging from the identification of interaction partners to the structural characterization of ligand-binding sites. On the basis of LC/MS data generated in the framework of the identification of the binding site of the neuropeptide corticotropin-releasing factor (CRF) on its binding protein (CRFBP), the key role of LC/MS in the characterization of photoadducts on different structural levels was demonstrated. Covalent photoadducts of rat CRFBP (rCRFBP) were obtained by PAL with different mono- and bifunctional benzophenone photoprobes designed on the basis of the sequence of the synthetic CRF fragment human/rat CRF6–33 which binds to CRFBP with high affinity. In view of the stoichiometry, LC/MS analysis revealed that the photoadducts consisted of one molecule of photoprobe and one molecule of rCRFBP. For a further characterization of the photoadducts on the oligopeptide level, enzymatic digests of unlabeled rCRFBP and of the respective photoadduct were compared by peptide mapping monitored with LC/MS. Thereby, it was found that the photoprobe that contained the photophore at its N-terminus labeled the amino acid sequence rCRFBP(34–38), whereas the photoprobe that contained the photophore at its C-terminus labeled rCRFBP(12–26). On the basis of the characterization of the photoadduct formed by rCRFBP and the bifunctional photoprobe that contained photophores on both termini, semiquantitative comparison of different enzymatic digests was accomplished by application of the mass-selective multiple ion chromatogram strategy.  相似文献   

20.
The interactions of insect juvenile hormones (JH) with proteins are critically important to titer regulation, transport, and hormone action at a molecular level. We have synthesized several JH analogs bearing photolabile diazocarbonyl groups as potential photoaffinity labels for JH binding proteins (JHBP). The most promising compound, 10, 11-epoxyfarnesyl diazoacetate (2) (EFDA) competes with JH III for The JH binding site of JHBP from Leucophaea hemolymph and ovaries and from cultured Drosophila cells. Moreover, irradiation of protein solutions containing micromolar amounts of EFDA gave irreversible loss of [3H]-JH III binding capacity with no change in binding affinity of the unlabelled protein. The protein could be protected against photoinactivation by the presence of equimolar JH III during irradiation. High specific activity [10-3H]-EFDA was prepared and used to demonstrate specific, finite binding of EFDA to the JH III receptor site of the binding protein. Further applications of photoaffinity labelling technique to characterization and cellular localization of the JHBP are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号