首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The crystalline structure of mangiferin (=2‐β‐D ‐glucopyranosyl‐1,3,6,7‐tetrahydroxy‐9H‐xanthen‐9‐one; 1 ), a biologically active xanthenone C‐glycoside, isolated from the stem bark of Mangifera indica (Anacardiaceae), was unambiguously determined by single‐crystal X‐ray diffraction (XRD). The crystal structure is summarized as follows: triclinic, P1, a=7.6575(5), b=11.2094(8), c=11.8749(8) Å, α=79.967(5), β=87.988(4), γ=72.164(4)°, V=955.3(1) Å3, and Z=2. The structure also shows two molecules in the asymmetric unit cell and five crystallization H2O molecules. The packing is stabilized by several intermolecular H‐bonds involving either the two symmetry‐independent mangiferin molecules 1a and 1b , or the H2O ones.  相似文献   

2.
In(DS)3 catalyzes formation of 9H‐xanthen‐9‐ol with indoles at room temperature in water to afford a class of 3‐(9H‐xanthen‐9‐yl)‐1H‐indole derivatives in high yields.  相似文献   

3.
The synthesis of four novel pyrano‐xanthenones derived from hydroxy‐9H‐xanthen‐9‐ones is described, and their photochromic properties in solution are reported. All compounds synthesized exhibit a good colorability, making them good potential dyes. The presence of the chromone system fused in the 7,8‐position seems to lead to more stabilized colored forms.  相似文献   

4.
A new bis‐xanthone (xanthone=9H‐xanthen‐9‐one), named bigarcinenone A ( 1 ) which is the first example of a bis‐xanthone with the xanthone–xanthone linkage between an aromatic C‐atom and a C5 side chain from a guttiferae plant, a new phloroglucinol (=benzene‐1,3,5‐triol) derivative, named garcinenone F ( 2 ), together with seven known xanthones were isolated from the bark of Garcinia xanthochymus. Their structures were elucidated by spectroscopic methods, especially 2D‐NMR techniques. Bigarcinenone A ( 1 ) exhibited potent antioxidant activity in the 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical‐scavenging test with a IC50 value of 9.2 μM , compared to the positive control, the well‐known antioxidant butylated hydroxytoluene (BHT) with a IC50 of 20 μM (Table 3).  相似文献   

5.
The crystal structure of the title bifunctional silicon‐bridged compound, C35H31NSi, (I), has been determined. The compound crystallizes in the centrosymmetric space group P21/c. In the crystal structure, the pairs of aryl rings in the two different chromophores, i.e. 9‐phenyl‐9H‐carbazole and 9,9‐dimethyl‐9H‐fluorene, are positioned orthogonally. In the crystal packing, no classical hydrogen bonding is observed. UV–Vis absorption and fluorescence emission spectra show that the central Si atom successfully breaks the electronic conjugation between the two different chromophores, and this was further analysed by density functional theory (DFT) calculations.  相似文献   

6.
The first preparation of acridin‐9(10H)‐ones carrying a tertiary thiocarbamoyl group at C(10), i.e., N,N‐dialkyl‐9‐oxoacridine‐10(9H)‐carbothioamides 9 , is described. The method is based on the reaction of (2‐halophenyl)(2‐isothiocyanatophenyl)methanones 7 , prepared from (2‐aminophenyl)(2‐halophenyl)methanones 5 by a convenient three‐step sequence, with secondary amines in DMF at room temperature to generate the corresponding thiourea derivatives 8 in situ, which are treated with NaH at 100–120° to provide the desired products in one‐pot reactions in generally good yields.  相似文献   

7.
One of the two bridging protons of the aza‐nido‐decaboranes RNB9H10X can be removed by certain bases to give nido‐anions [RNB9H9X] [R/X = H/H ( 1 a ), Ph/H ( 1 b ), p‐MeC6H4/H ( 1 c ), Bzl/H ( 1 d ), H/N3 ( 1 ′ a )]; the stericly demanding base 1,8‐bis(dimethylamino)naphthalene (“proton sponge”, ps) is ideal. In the case of tBu anion, the deprotonation (→ C4H10) may be accompanied by a hydridation (→ C4H8), yielding the arachno‐anions [RNB9H11X] ( 2 a , b , d , 2 ′ a ); these are the main products, when stericly non‐demanding bases like H are applied. The Lewis acid BH3 is added to 1 a and 1 ′ a to give the aza‐arachno‐undecaborates HNB10H12X [X = H ( 3 a ), N3 (in position 2) ( 3 ′ a )]. Thia‐ and selenaaza‐arachno‐undecaborates, [S(RN)B9H10] ( 4 b , c ) and [Se(RN)B9H10] ( 4 ′ b , c ), are obtained from 1 b , c by the addition of sulfur or selenium, respectively. The methylation of the anions 4 c and 4 ′ c gives the thia‐ and selenaazaarachno‐undecaboranes (MeS)(RN)B9H10 ( 5 c ) and (MeSe)(RN)B9H10 ( 5 ′ c ), respectively. The action of HBF4 on the arachno‐borates [HNB10H12X] ( 3 a , 3 ′ a ) leads to a mixture of nido‐HNB9H10X and nido‐HNB10H11X by the elimination of BH3 or H2, respectively; the aza‐nido‐decaborane predominates in the case of 3 ′ a and the aza‐nido‐undecaborane in the case of 3 a . The action of HBF4 on the anion 4 c yields the hypho‐undecaborate [S(RN)B9H10F2] ( 6 c ). The structures of the products are elucidated on the basis of 1H and 11B NMR spectra, supported by 2D COSY and HMQC techniques. Two types of 11‐vertex‐arachno structures and an 11‐vertex‐hypho structure are found for the products. The crystal structures of 5 c and [Hps] 6 c · CH2Cl2 are reported.  相似文献   

8.
《中国化学》2017,35(12):1869-1874
A metal‐organic framework (MOF ) formulated as [Cd23‐L)2(DMF )4]•H2O ( CdL ) [H2L =9‐(pyridin‐4‐yl)‐ 9H ‐carbazole‐3,6‐dicarboxylic acid, DMF =N ,N ‐dimethylformamide] was synthesized under solvothermal condition. Crystal structural analysis reveals that CdL features the layered 2D framework with L2 ligands as 3‐connected nodes. The compound CdL emits blue‐violet light with the narrow emission peak and the emission maximum at 414 nm upon excitation at the maximum excitation wavelength of 340 nm. The compound CdL has a similar emission spectrum curve to the free H2L ligand that indicates the emission of compound CdL should be originated from the coordinated L2 ligands.  相似文献   

9.
Jing Cao  Yang Li  Junxiang Feng 《中国化学》2012,30(7):1571-1574
Two kinds of novel styryl chemosensory 2‐FMNC and 3‐FMNC, were designed and synthesized by an apporiate introduction of 9‐benzylidene‐9H‐fluorene group as fluorophore with the aim at avoiding photoisomerisation. These 9‐benzylidene‐9H‐fluorene derivatives showed the similar selectivity and sensitivity upon addition of metal ions. The sensitivity of FMNC to alkaline earth metal ions was Ba2+>Sr2+>Ca2+≈Mg2+.  相似文献   

10.
Monoalkylation or acylation of fluorescein ( 1 ) with various acyloxymethyl or acyl halides afforded, respectively, a series of ether‐ ( 2 ) and ester‐functionalized ( 3 ) fluorogenic probes. The highly reactive and water‐soluble substrates release fluorescein ( 1 ) upon reaction with lipases and esterases within seconds or minutes, both under fully aqueous conditions or in the presence of DMSO (20%) as a co‐solvent. The most‐reactive substrates in the two series were the octanoic acid derivatives 2f (= 2‐{6‐[(octanoyloxy)methoxy]‐3‐oxo‐3H‐xanthen‐9‐yl}benzoic acid) and 3a (= 2‐[6‐(octanoyloxy)‐3‐oxo‐3H‐xanthen‐9‐yl]benzoic acid). Esterases were found to generally react faster under aqueous conditions, while lipases were more reactive in the presence of DMSO as a co‐solvent.  相似文献   

11.
Heptalenecarbaldehydes 1 / 1′ as well as aromatic aldehydes react with 3‐(dicyanomethylidene)‐indan‐1‐one in boiling EtOH and in the presence of secondary amines to yield 3‐(dialkylamino)‐1,2‐dihydro‐9‐oxo‐9H‐indeno[2,1‐c]pyridine‐4‐carbonitriles (Schemes 2 and 4, and Fig. 1). The 1,2‐dihydro forms can be dehydrogenated easily with KMnO4 in acetone at 0° (Scheme 3) or chloranil (=2,3,5,6‐tetrachlorocyclohexa‐2,5‐diene‐1,4‐dione) in a ‘one‐pot’ reaction in dioxane at ambient temperature (Table 1). The structures of the indeno[2,1‐c]pyridine‐4‐carbonitriles 5′ and 6a have been verified by X‐ray crystal‐structure analyses (Fig. 2 and 4). The inherent merocyanine system of the dihydro forms results in a broad absorption band in the range of 515–530 nm in their UV/VIS spectra (Table 2 and Fig. 3). The dehydrogenated compounds 5, 5′ , and 7a – 7f exhibit their longest‐wavelength absorption maximum at ca. 380 nm (Table 2). In contrast to 5 and 5′, 7a – 7f in solution exhibit a blue‐green fluorescence with emission bands at around 460 and 480 nm (Table 4 and Fig. 5).  相似文献   

12.
The crystal structures of 9‐[(E)‐(4‐nitrophenyl)vinyl]‐9H‐carbazole and 9‐[(E)‐(3‐nitrophenyl)vinyl]‐9H‐carbazole, both C20H14N2O2, are determined mainly by van der Waals forces and π–π interactions between the carbazole and benzene systems. However, the packing modes are different. In the 4‐nitro derivative, the molecules in the weakly bound stack are related by a unit‐cell translation, while in the 3‐nitro derivative there are centrosymmetric pairs of molecules joined by π–π interactions and also pairs of molecules, related by another centre of symmetry, connected by eight relatively short C—H...O interactions.  相似文献   

13.
An investigation into the preparation of poly(9‐alkyl‐9H‐carbazole‐3,6‐diyl)s with palladium catalyzed cross‐coupling reactions of 3‐halo‐6‐halomagnesio‐9‐alkyl‐9H‐carbazoles, generated in situ from their corresponding 3,6‐diiodo‐ and 3,6‐dibromo‐derivatives was undertaken. Monomers with a range of alkyl group substituents with different steric requirements were investigated and their effects on the polymerization were studied. The effects of the nature of halogen substituents on the polymerization reaction were also investigated. Structural analysis of the polymers revealed exclusive 3,6‐linkage between consecutive carbazole repeat units on the polymer chains. The physical properties of these polymers were investigated with spectroscopic, thermal gravimetric analysis, and electrochemical studies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6041–6051, 2004  相似文献   

14.
The 1H‐pyrazole‐3‐carboxylic acid 1 was converted via reactions of its acid chloride 3 with various asymmetrical disubstituted urea and alcohol derivatives into the corresponding novel 4‐benzoyl‐N‐(N′,N′‐dialkylcarbamyl)‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxamide 4a , b and alkyl 4‐benzoyl‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxylate 7a‐c , respectively, in good yields (57%‐78%). Friedel‐Crafts reactions of 3 with aromatic compouns for 15 min.‐2 h led to the formation of the 4‐3‐diaroyl‐1‐(4‐hydroxyphenyl)‐5‐phenyl‐1H‐pyrazoles 9a‐c , 4‐benzoyl‐1‐(4‐methoxyphenyl)‐3‐aroyl‐5‐phenyl‐1H‐pyrazoles 10a , b and than from the acylation reactions of 9a‐c were obtained the 3,4‐diaroyl‐1‐(4‐acyloxyphenyl)‐5‐phenyl‐1H‐pyrazoles 13a‐d . The structures of all new synthesized compounds were established by NMR experiments such as 1H, and 13C, as well as 2D COSY and IR spectroscopic data, and elemental analyses. All the compounds were evaluated for their antimicrobial activities (agar diffusion method) against eight bacteria and two yeasts.  相似文献   

15.
The postmodification of poly[9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P1 ) upon its reaction with N‐bromosuccinimide affords exclusive and full bromination of the 3,6‐positions of the carbazole repeat units to yield poly[3,6‐dibromo‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P2 ). Brominated polymer P2 can be used as a precursor for further functionalization at the 3,6‐positions with the desired functional group to afford other useful polymers. Polymer P2 has hence been reacted with copper(I) cyanide to afford poly[3,6‐dicyano‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P3 ). Full substitution of the bromide groups with nitrile‐functional groups has been achieved. The preparation and structural characterization of polymers P2 and P3 are presented together with studies on their electronic conjugation and photoluminescence properties. Cyclic voltammetry studies on polymer P3 indicate that the new polymer is easier to reduce (n‐dope) but more difficult to oxidize than its unsubstituted counterpart ( P1 ) as a result of the introduction of the electron‐withdrawing nitrile‐functional groups at the 3,6‐positions on the carbazole repeat units on the polymer chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3336–3342, 2006  相似文献   

16.
The title compounds, the P(3)‐axially and P(3)‐equatorially substituted cis‐ and trans‐configured 9‐benzyl‐3‐fluoro‐2,4‐dioxa‐9‐aza‐3‐phosphadecalin 3‐oxides (=9‐benzyl‐3‐fluoro‐2,4‐dioxa‐9‐aza‐3‐phosphabicyclo[4.4.0]decane 3‐oxides=7‐benzyl‐2‐fluorohexahydro‐4H‐1,3,2‐dioxaphosphorino[4,5‐c]pyridine 2‐oxides) were prepared (ee >99%) and fully characterized (Schemes 2 and 4). The absolute configurations were deduced from that of their precursors, the enantiomerically pure ethyl 1‐benzyl‐3‐hydroxypiperidine‐4‐carboxylates and 1‐benzyl‐3‐hydroxypiperidine‐4‐methanols which were unambiguously assigned. Being configuratively fixed and conformationally constrained phosphorus analogues of acetylcholine, the title compounds represent acetylcholine mimetics and are suitable probes for the investigation of molecular interactions with acetylcholinesterase. As determined by kinetic methods, all of the compounds are moderate irreversible inhibitors of the enzyme.  相似文献   

17.
The crystal structures of three products of the reaction of 2‐phenylphenol and BCl3 have been determined. The structures show intriguing packing patterns and an interesting case of pseudosymmetry. In addition, one of the two polymorphs has a primitive monoclinic crystal system, but it is twinned and emulates an orthorhombic C‐centred structure. Tris(biphenyl‐2‐yl) borate, C36H27BO3, ( III ), crystallizes with only one molecule in the asymmetric unit. The dihedral angles between the planes of the aromatic rings in the biphenyl moieties are 50.47 (13), 44.95 (13) and 42.60 (13)°. The boron centre is in a trigonal planar coordination with two of the biphenyl residues on one side of the BO3 plane and the remaining biphenyl residue on the other side. One polymorph of 10‐oxa‐9‐boraphenanthren‐9‐ol, C12H9BO2, ( V a ), crystallizes with two almost identical molecules (r.m.s. deviation of all non‐H atoms = 0.039 Å) in the asymmetric unit. All non‐H atoms lie in a common plane (r.m.s. deviation = 0.015 Å for both molecules in the asymmetric unit). The two molecules in the asymmetric unit are connected into dimers via O—H...O hydrogen bonds. A second polymorph of 10‐oxa‐9‐boraphenanthren‐9‐ol, ( V b ), crystallizes as a pseudo‐merohedral twin with two almost identical molecules (r.m.s. deviation of all non‐H atoms = 0.035 Å) in the asymmetric unit. All non‐H atoms lie in a common plane (r.m.s. deviation = 0.012 Å for molecule 1 and 0.014 Å for molecule A). Each of the two molecules in the asymmetric unit is connected into a centrosymmetric dimer via O—H...O hydrogen bonds. The main difference between the two polymorphic structures is that in ( V a ) the two molecules in the asymmetric unit are hydrogen bonded to each other, whereas in ( V b ), each molecule in the asymmetric unit forms a hydrogen‐bonded dimer with its centrosymmetric equivalent. 9‐[(Biphenyl‐2‐yl)oxy]‐10‐oxa‐9‐boraphenanthrene, C24H17BO2, ( VI ), crystallizes with four molecules in the asymmetric unit. The main differences between them are the dihedral angles between the ring planes. Apart from the biphenyl moiety, all non‐H atoms lie in a common plane (r.m.s. deviations = 0.026, 0.0231, 0.019 and 0.033 Å for molecules 1, A, B and C, respectively). This structure shows pseudosymmetry; molecules 1 and A, as well as molecules B and C, are related by a pseudo‐translation of about in the direction of the b axis. Molecules 1 and B, as well as molecules A and C, are related by a pseudo‐inversion centre at ,,. Neither between molecules 1 and C nor between molecules A and B can pseudosymmetry be found.  相似文献   

18.
2,3‐Dihydro‐4H‐thiopyrano[2,3‐b]pyridin‐4‐ones 4 were prepared by a three‐step sequence from commercially available 2‐chloropyridine ( 1 ). Thus, successive treatment of 1 with iPr2NLi (LDA) and α,β‐unsaturated aldehydes gave 1‐(2‐chloropyridin‐3‐yl)alk‐2‐en‐1‐ols 2 , which were oxidized with MnO2 to 1‐(2‐chloropyridin‐3‐yl)alk‐2‐en‐1‐ones 3 . The reactions of 3 with NaSH?n H2O proceeded smoothly at 0° in DMF to provide the desired thiopyranopyridinones. Similarly, 2,3‐dihydro‐4H‐thiopyrano[2,3‐c]pyridin‐4‐ones 8 and 2,3‐dihydro‐4H‐thiopyrano[3,2‐c]pyridin‐4‐ones 12 were obtained starting from 3‐chloropyridine ( 5 ) and 4‐chloropyridine ( 9 ), respectively.  相似文献   

19.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

20.
When 2,3‐dichloro‐1,4‐naphthoquinone (DCHNQ) ( 1 ) is allowed to react with 1‐phenylbiguanide (PBG) ( 2 ), 4‐chloro‐2,5‐dihydro‐2,5‐dioxonaphtho[1,2‐d]imidazole‐3‐carboxylic acid phenyl amide ( 4 ), 6‐chloro‐8‐phenylamino‐9H‐7,9,11‐triaza‐cyclohepta[a]naphthalene‐5,10‐dione ( 5 ) and 4‐dimethyl‐amino‐5,10‐dioxo‐2‐phenylimino‐5,10‐dihydro‐2H‐benzo[g]quinazoline‐1‐carboxylic acid amide ( 6 ) were obtained. While on reacting 1 with 2‐guanidinebenzimidazole (GBI) ( 3 ) the products are 3‐(1H‐benzoimidazol‐2‐yl)‐4‐chloro‐3H‐naphtho[1,2‐d]imidazole‐2,5‐dione ( 7 ) and 3‐[3‐(1H‐benzoimidazol‐2‐yl)‐ureido]‐1,4‐dioxo‐1,4‐dihydronaphthalene‐2‐carboxylic acid dimethylamide ( 8 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号