首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrogen transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity. Reaction of [Ph2PNHCH2‐C4H3S] with [Ru(η6‐benzene)(µ‐Cl)Cl]2, [Rh(µ‐Cl)(cod)]2 and [Ir(η5‐C5Me5)(µ‐Cl)Cl]2 gave a range of new monodendate complexes [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, [Rh(Ph2PNHCH2‐C4H3S)(cod)Cl], 2, and [Ir(Ph2PNHCH2‐C4H3S)(η5‐C5Me5)Cl2], 3, respectively. All new complexes were fully characterized by analytical and spectroscopic methods. 1H? 31P NMR, 1H? 13C HETCOR or 1H? 1H COSY correlation experiments were used to confirm the spectral assignments. 1–3 are suitable catalyst precursors for the transfer hydrogenation of acetophenone derivatives. Notably [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, acts as an excellent catalyst, giving the corresponding alcohols in 98–99% yields in 30 min at 82 °C (TOF ≤200 h?1) for the transfer hydrogenation reaction in comparison to analogous rhodium or iridium complexes. This transfer hydrogenation is characterized by low reversibility under these conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Reaction of Ph2PNHCH2-C4H3S with [Ru(η6-p-cymene)(μ-Cl)Cl]2, [Ru(η6-benzene)(μ-Cl)Cl]2, [Rh(μ-Cl)(cod)]2 and [Ir(η5-C5Me5)(μ-Cl)Cl]2 yields complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1, [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2, [Rh(Ph2PNHCH2-C4H3S)(cod)Cl], 3 and [Ir(Ph2PNHCH2-C4H3S)(η5-C5Me5)Cl2], 4, respectively. All complexes were isolated from the reaction solution and fully characterized by analytical and spectroscopic methods. The structure of [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 was also determined by single crystal X-ray diffraction. 1-4 are suitable precursors forming highly active catalyst in the transfer hydrogenation of a variety of simple ketones. Notably, the catalysts obtained by using the ruthenium complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1 and [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 are much more active in the transfer hydrogenation converting the carbonyls to the corresponding alcohols in 98-99% yields (TOF ≤ 200 h−1) in comparison to analogous rhodium and iridium complexes.  相似文献   

4.
Abstract

The interaction of [Ru(η6-arene)(μ-Cl)Cl]2 and Ir(η5-C5Me5)(μ-Cl)Cl]2 with a new Ionic Liquid-based phosphinite ligand, [(Ph2PO)-C6H9N2Ph]Cl, (2) gave [Ru((Ph2PO)-C6H9N2Ph)(η6-p-cymene)Cl2]Cl (3), [Ru((Ph2PO)-C6H9N2Ph)(benzene)Cl2]Cl (4) and [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5), complexes. All the compounds were characterized by a combination of multinuclear NMR and IR spectroscopy as well as elemental analysis. Furthermore, the Ru(II) and Ir(III) catalysts were applied to asymmetric transfer hydrogenation of acetophenone derivatives using 2-propanol as a hydrogen source. The results showed that the corresponding alcohols could be obtained with good activity (up to 55% ee and 99% conversion) under mild conditions. Notably, [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5) is more active than the other analogous complexes in the transfer hydrogenation (up to 81% ee).  相似文献   

5.
Reaction of [Ru(η6p‐cymene)Cl2]2 with two equivalents of [Ph4P][Cl] in CH2Cl2 yields [Ph4P][Ru(η6p‐cymene)Cl3], containing a trichlororuthenate(II) anion. In solution, an equilibrium between the product and [Ru(η6p‐cymene)Cl2]2 is observed, which in CDCl3 is nearly completely shifted to the dimer, whereas in CD2Cl2 essentially a 1:1‐mixture of the two ruthenium species is present. Crystallization from CH2Cl2/pentane yielded two different crystals, which were identified by X‐ray analysis as [Ph4P][Ru(η6p‐cymene)Cl3] and [Ph4P][Ru(η6p‐cymene)Cl3]·CH2Cl2.  相似文献   

6.
The compounds tert‐butylarsenium(III) tri‐μ‐chlorido‐bis[trichloridotitanium(IV)], (C4H12As)[Ti2Cl9] or [tBuAsH3][Ti2(μ‐Cl)3Cl6], (II), and bis[bromidotriphenylarsenium(V)] di‐μ‐bromido‐μ‐oxido‐bis[tribromidotitanium(IV)], (C18H15AsBr)2[Ti2Br8O] or [Ph3AsBr]2[Ti2(μ‐O)(μ‐Br)2Br6], (III), were obtained unexpectedly from the reaction of simple arsane ligands with TiIV halides, with (II) lying on a mirror plane in the unit cell of the space group Pbcm. Both compounds contain a completely novel ion, with [tBuAsH3]+ constituting the first structurally characterized example of a primary arsenium cation. The oxide‐bridged titanium‐containing [Ti2(μ‐O)(μ‐Br)2Br6]2− dianion in (III) is also novel, while the bromidotriphenylarsenium(V) cation is structurally characterized for only the second time.  相似文献   

7.
Formal [2 + 2 + 2] addition reactions of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with PhC?CR (R = H, COOEt) give [Cp*Ru(η6‐C6H5? C9H8R)] BF4 (1a, R = H; 2a, R = COOEt). Treatment of [Cp*Ru(H2O)(NBD)]BF4 with PhC?C? C?CPh does not give [2 + 2 + 2] addition product, but [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BF4(3a). Treatment of 1a, 2a, 3a with NaBPh4 affords [Cp*Ru(η6‐C6H5? C9H8R)] BPh4 (1b, R = H; 2b, R = COOEt) and [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BPh4(3b). The structures of 1b, 2b and 3b were determined by X‐ray crystallography. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The reactions of thiophene‐2‐(N‐diphenylphosphino)methylamine, Ph2PNHCH2‐C4H3S, 1 and thiophene‐2‐[N,N‐bis(diphenylphosphino)methylamine], (Ph2P)2NCH2‐C4H3S, 2, with MCl2(cod) (M = Pd, Pt; cod = 1,5‐cyclooctadiene) or [Cu(CH3CN)4]PF6 yields the new complexes [M(Ph2PNHCH2‐C4H3S)2Cl2], M = Pd 1a, Pt 1b, [Cu(Ph2PNHCH2‐C4H3S)4]PF6, 1c, and [M(Ph2P)2NCH2‐C4H3S)Cl2], M = Pd 2a, Pt 2b, {Cu[(Ph2P)2NCH2‐C4H3S]2}PF6, 2c, respectively. The new compounds were isolated as analytically pure crystalline solids and characterized by 31P‐, 13C‐, 1H‐NMR and IR spectroscopy and elemental analysis. Furthermore, the solid‐state molecular structures of representative palladium and platinum complexes of bis(phosphine)amine, 2a and 2b, respectively, were determined using single crystal X‐ray diffraction analysis. The palladium complexes were tested as potential catalysts in the Heck and Suzuki cross‐coupling reactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The Dihydridoiridium(III) Complex [IrH2Cl(P i Pr3)2] as a Molecular Building Block for Unsymmetrical Binuclear Rhodium–Iridium and Iridium–Iridium Compounds The title compound [IrH2Cl(PiPr3)2] ( 3 ) reacts with the chloro‐bridged dimers [RhCl(PiPr3)2]2 ( 1 ) and [IrCl(C8H14)(PiPr3)]2 ( 5 ) by cleavage of the Cl‐bridges to give the unsymmetrical binuclear complexes 4 and 6 with Rh(μ‐Cl)2Ir and Ir(μ‐Cl)2Ir as the central building block. The reactions of 3 with the bis(cyclooctene) and (1,5‐cyclooctadiene) compounds [MCl(C8H14)2]2 ( 7 , 8 ) and [MCl(η4‐C8H12)]2 ( 9 , 10 ) (M = Rh, Ir) occur analogously and afford the rhodium(I)‐iridium(III) and iridium(I)‐iridium(III) complexes 11 – 14 in 70–80% yield. Treatment of [(η4‐C8H12)M(μ‐Cl)2IrH2(PiPr3)2] ( 13 , 14 ) with phenylacetylene leads to the formation of the substitution products [(η4‐C8H12)M(μ‐Cl)2IrH(C≡CPh)(PiPr3)2] ( 15 , 16 ) without changing the central molecular core. Similarly, the compound [(η4‐C8H12)Rh(μ‐Br)2IrH(C≡CPh)(PiPr3)2] ( 18 ) has been prepared; it was characterized by X‐ray crystallography.  相似文献   

10.
The compounds tricarbonyl(η5‐1‐iodocyclopentadienyl)manganese(I), [Mn(C5H4I)(CO)3], (I), and tricarbonyl(η5‐1‐iodocyclopentadienyl)rhenium(I), [Re(C5H4I)(CO)3], (III), are isostructural and isomorphous. The compounds [μ‐1,2(η5)‐acetylenedicyclopentadienyl]bis[tricarbonylmanganese(I)] or bis(cymantrenyl)acetylene, [Mn2(C12H8)(CO)6], (II), and [μ‐1,2(η5)‐acetylenedicyclopentadienyl]bis[tricarbonylrhenium(I)], [Re2(C12H8)(CO)6], (IV), are isostructural and isomorphous, and their molecules display inversion symmetry about the mid‐point of the ligand C[triple‐bond]C bond, with the (CO)3M(C5H4) (M = Mn and Re) moieties adopting a transoid conformation. The molecules in all four compounds form zigzag chains due to the formation of strong attractive I...O [in (I) and (III)] or π(CO)–π(CO) [in (I) and (IV)] interactions along the crystallographic b axis. The zigzag chains are bound to each other by weak intermolecular C—H...O hydrogen bonds for (I) and (III), while for (II) and (IV) the chains are bound to each other by a combination of weak C—H...O hydrogen bonds and π(Csp2)–π(Csp2) stacking interactions between pairs of molecules. The π(CO)–π(CO) contacts in (II) and (IV) between carbonyl groups of neighboring molecules, forming pairwise interactions in a sheared antiparallel dimer motif, are encountered in only 35% of all carbonyl interactions for transition metal–carbonyl compounds.  相似文献   

11.
The dimanganese bridging borylene complex [μ‐BMes {(η5‐C5H4Me)Mn(CO)2}2] was synthesized from Mes(Cl)BB(Cl)Mes and K[(η5‐C5H4Me)Mn(CO)2H] at low temperature, providing a small sample after manual separation of crystals, allowing a perfunctory spectroscopic analysis, but affording conclusive X‐ray crystallographic structural data. The trimetallic bridging borylene complex [(μ3‐BCl){{(η5‐C5H4Me)Mn(CO)2} {Pd(PCy3)}2}] was prepared by the addition of [Pd(PCy3)2] to a solution of [μ‐BCl{(η5‐C5H4Me)Mn(CO)2}2], affording pure crystals that were fully characterised including X‐ray crystallographic analysis. The structure is reconciled with detailed theoretical analysis for related model complexes, [(μ3‐BX){{(η5‐C5H5)Mn(CO)2}{Pd(PMe3)}2}] (X = Me, Cl).  相似文献   

12.
The 7,8-B9C2H112- ion reacts with (Ph3P)2Rh(CO)Cl to form (B9C2H11)-Rh(Cl)(Ph3P)2. This rhodacarborane reacts with NaBPh4 to produce (B9C2H11-Rh(Ph3P)(Ph4B). The new metallocarboranes [(B9C2H11)Rh(Ph3P)(C6H6)]2 and (B9C2H11)Rh(H)(Ph3P) were obtained from the reaction of B9C2H112- and (Ph3P)3RhCl. The ruthenacarboranes (B9C2H11)Ru(CO)(Ph3P)2 and (B9C2H11-Ru(CO)3 · 0.5C6H6 were prepared from (Ph3P)Ru(CO)2Cl2 and [Ru(CO)3Cl2]2 respectively.  相似文献   

13.
Synthesis, Structure, and Reactivity of η1‐ and η3‐Allyl Rhenium Carbonyls In (η3‐C3H5)Re(CO)4 one CO ligand can be substituted by PPh3, pyridine, isocyanide and benzonitrile. With 1,2‐bis(diphenylphosphino)ethylene, 1,1′‐bis(diphenylphosphino)ferrocene and 1,2‐bis(4‐pyridyl)ethane dinuclear ligand bridged complexes are obtained. The η3‐η1 conversion of the allyl ligand occurs on reaction of (η3‐C3H5)Re(CO)4 with the bidendate ligands 1,2‐bis(diphenylphosphino)ethane and 1,3‐bis(diphenylphosphino)propane and with 2,2′‐bipyridine (L–L) which gives the complexes (η1‐C3H5)Re(CO)3(L–L). By reaction of (η3‐C3H5)Re(CO)4 with bis(diphenylphosphino)methane the allyl group is protonated and under elemination of propene the complex (OC)3Re(Ph2PCHPPh2)(η1‐Ph2PCH2PPh2) ( 19 ) with a diphosphinomethanide ligand is formed. On heating solutions of (η3‐C3H5)Re(CO)4 and (η3‐C3H5)Re(CO)3(CN‐2,5‐Me2C6H3) ( 5 ) in methanol the methoxy bridged compounds Re4(CO)12(OH)(OMe)3 and Re2(CO)4(CN‐2,5‐Me2C6H3)4(μ‐OMe)2 ( 20 ) were isolated. The crystal structures of (η3‐C3H5)Re(CO)3(CNCH2SiMe3) ( 4 ), [(η3‐C3H5)(OC)3Re]2‐ (μ‐bis‐(diphenylphosphino)ferrocene) ( 8 ), (η1‐C3H5)Re(CO)3‐ (bpy) ( 14 ), of 19 , 20 and of (OC)3Re‐[Ph2P(CH2)3PPh2]Cl ( 16 ) were determined by X‐ray diffraction.  相似文献   

14.
Chiral Half‐sandwich Pentamethylcyclopentadienyl Rhodium(III) and Iridium(III) Complexes with Schiff Bases from Salicylaldehyde and α‐Amino Acid Esters [1] A series of diastereoisomeric half‐sandwich complexes with Schiff bases from salicylaldehyde and L‐α‐amino acid esters including chiral metal atoms, [(η5‐C5H5)(Cl)M(N,O‐Schiff base)], has been obtained from chloro bridged complexes [(η5‐C5Me5)(Cl)M(μ‐Cl)]2 (M = Rh, Ir). Abstraction of chloride from these complexes with Ag[BF4] or Ag[SO3CF3] affords the highly sensitive compounds [(η5‐C5Me5)M(N,O‐Schiff base]+X? (M = Rh, Ir; X = BF4, CF3SO3) to which PPh3 can be added under formation of [(η5‐C5Me5)M(PPh3)(N,O‐Schiff base)]+X?. The diastereoisomeric ratio of the complexes ( 1 ‐ 7 and 11 ‐ 12 ) has been determined from NMR spectra.  相似文献   

15.
In contrast to ruthenocene [Ru(η5‐C5H5)2] and dimethylruthenocene [Ru(η5‐C5H4Me)2] ( 7 ), chemical oxidation of highly strained, ring‐tilted [2]ruthenocenophane [Ru(η5‐C5H4)2(CH2)2] ( 5 ) and slightly strained [3]ruthenocenophane [Ru(η5‐C5H4)2(CH2)3] ( 6 ) with cationic oxidants containing the non‐coordinating [B(C6F5)4]? anion was found to afford stable and isolable metal?metal bonded dicationic dimer salts [Ru(η5‐C5H4)2(CH2)2]2[B(C6F5)4]2 ( 8 ) and [Ru(η5‐C5H4)2(CH2)3]2[B(C6F5)4]2 ( 17 ), respectively. Cyclic voltammetry and DFT studies indicated that the oxidation potential, propensity for dimerization, and strength of the resulting Ru?Ru bond is strongly dependent on the degree of tilt present in 5 and 6 and thereby degree of exposure of the Ru center. Cleavage of the Ru?Ru bond in 8 was achieved through reaction with the radical source [(CH3)2NC(S)S?SC(S)N(CH3)2] (thiram), affording unusual dimer [(CH3)2NCS2Ru(η5‐C5H4)(η3‐C5H4)C2H4]2[B(C6F5)4]2 ( 9 ) through a haptotropic η5–η3 ring‐slippage followed by an apparent [2+2] cyclodimerization of the cyclopentadienyl ligand. Analogs of possible intermediates in the reaction pathway [C6H5ERu(η5‐C5H4)2C2H4][B(C6F5)4] [E=S ( 15 ) or Se ( 16 )] were synthesized through reaction of 8 with C6H5E?EC6H5 (E=S or Se).  相似文献   

16.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

17.
Treatment of [Ru2(CO)(μ-CO) {μ-C(O)C2Ph2} (η-C 5H5)2] with allene in toluene at 100°C displaces diphenylacetylene and produces [Ru(CO)(η-C5H5)-{η3-C3H4Ru(CO)2(η-C5H5)}]; upon protonation a 1-methylvinyl cation [Ru2(CO)2(μ-CO){μ-C(Me)CH2}(η-C5H5)2]+ is formed which undergoes nucleophillic attack by hydride to yield the μ-dimethylcarbene complex [Ru2(CO)2-(μ-CO)(μ-CMe2)(η-C5H5)2].  相似文献   

18.
A dinuclear tantalum complex, [Ta2Cl6(μ‐C4Et4)] ( 2 ), bearing a tantallacyclopentadiene moiety, was synthesized by treating [(η2‐EtC?CEt)TaCl3(DME)] ( 1 ) with AlCl3. Complex 2 and its Lewis base adducts, [Ta2Cl6(μ‐C4Et4)L] (L=THF ( 3 a ), pyridine ( 3 b ), THT ( 3 c )), served as more active catalysts for cyclotrimerization of internal alkynes than 1 . During the reaction of 3 a with 3‐hexyne, we isolated [Ta2Cl4(μ‐η44‐C6Et6)(μ‐η22‐EtC?CEt)] ( 4 ), sandwiched by a two‐electron reduced μ‐η44‐hexaethylbenzene and a μ‐η22‐3‐hexyne ligand, as a product of an intermolecular cyclization between the metallacyclopentadiene moiety and 3‐hexyne. The formation of arene complexes [Ta2Cl4(μ‐η44‐C6Et4Me2)(μ‐η22‐Me3SiC?CSiMe3)] ( 7 b ) and [Ta2Cl4(μ‐η44‐C6Et4RH)(μ‐η22‐Me3SiC?CSiMe3)] (R=nBu ( 8 a ), p‐tolyl ( 8 b )) by treating [Ta2Cl4(μ‐C4Et4)(μ‐η22‐Me3SiC?CSiMe3)] ( 6 ) with 2‐butyne, 1‐hexyne, and p‐tolylacetylene without any isomers, at room temperature or low temperature were key for clarifying the [4+2] cycloaddition mechanism because of the restricted rotation behavior of the two‐electron reduced arene ligands without dissociation from the dinuclear tantalum center.  相似文献   

19.
The dimer [Ru(η6-C16H16)Cl2]2 reacts with ligands L (L  PMe2Ph, PPh3, C5H5N) to give both neutral monomeric [Ru(η6-C16H16)Cl2L] and cationic monomeric [Ru(η6-C16H16)ClL2]+ products. One example, [Ru(η6-C16H16)Cl(C5H5N)2]-[PF6], has been characterised by X-ray crystallography. Reaction with the bidentate ligand 2,2′-bipyridyl gives the mononuclear cation [Ru(η6-C16H16)Cl(bipy)]+, isolated as its [BPh4] salt, whereas reaction with OMe or OEt gives dinuclear products [Ru(η6-C16H16)2(OR)3]+.  相似文献   

20.
Treatment of [K(BIPMMesH)] (BIPMMes={C(PPh2NMes)2}2?; Mes=C6H2‐2,4,6‐Me3) with [UCl4(thf)3] (1 equiv) afforded [U(BIPMMesH)(Cl)3(thf)] ( 1 ), which generated [U(BIPMMes)(Cl)2(thf)2] ( 2 ), following treatment with benzyl potassium. Attempts to oxidise 2 resulted in intractable mixtures, ligand scrambling to give [U(BIPMMes)2] or the formation of [U(BIPMMesH)(O)2(Cl)(thf)] ( 3 ). The complex [U(BIPMDipp)(μ‐Cl)4(Li)2(OEt2)(tmeda)] ( 4 ) (BIPMDipp={C(PPh2NDipp)2}2?; Dipp=C6H3‐2,6‐iPr2; tmeda=N,N,N′,N′‐tetramethylethylenediamine) was prepared from [Li2(BIPMDipp)(tmeda)] and [UCl4(thf)3] and, following reflux in toluene, could be isolated as [U(BIPMDipp)(Cl)2(thf)2] ( 5 ). Treatment of 4 with iodine (0.5 equiv) afforded [U(BIPMDipp)(Cl)2(μ‐Cl)2(Li)(thf)2] ( 6 ). Complex 6 resists oxidation, and treating 4 or 5 with N‐oxides gives [{U(BIPMDippH)(O)2‐ (μ‐Cl)2Li(tmeda)] ( 7 ) and [{U(BIPMDippH)(O)2(μ‐Cl)}2] ( 8 ). Treatment of 4 with tBuOLi (3 equiv) and I2 (1 equiv) gives [U(BIPMDipp)(OtBu)3(I)] ( 9 ), which represents an exceptionally rare example of a crystallographically authenticated uranium(VI)–carbon σ bond. Although 9 appears sterically saturated, it decomposes over time to give [U(BIPMDipp)(OtBu)3]. Complex 4 reacts with PhCOtBu and Ph2CO to form [U(BIPMDipp)(μ‐Cl)4(Li)2(tmeda)(OCPhtBu)] ( 10 ) and [U(BIPMDipp)(Cl)(μ‐Cl)2(Li)(tmeda)(OCPh2)] ( 11 ). In contrast, complex 5 does not react with PhCOtBu and Ph2CO, which we attribute to steric blocking. However, complexes 5 and 6 react with PhCHO to afford (DippNPPh2)2C?C(H)Ph ( 12 ). Complex 9 does not react with PhCOtBu, Ph2CO or PhCHO; this is attributed to steric blocking. Theoretical calculations have enabled a qualitative bracketing of the extent of covalency in early‐metal carbenes as a function of metal, oxidation state and the number of phosphanyl substituents, revealing modest covalent contributions to U?C double bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号