首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The modular assembly of boronic acids with Schiff‐base ligands enabled the construction of innovative fluorescent dyes [boronic acid salicylidenehydrazone (BASHY)] with suitable structural and photophysical properties for live cell bioimaging applications. This reaction enabled the straightforward synthesis (yields up to 99 %) of structurally diverse and photostable dyes that exhibit a polarity‐sensitive green‐to‐yellow emission with high quantum yields of up to 0.6 in nonpolar environments. These dyes displayed a high brightness (up to 54 000 m ?1 cm?1). The promising structural and fluorescence properties of BASHY dyes fostered the preparation of non‐cytotoxic, stable, and highly fluorescent poly(lactide‐co‐glycolide) nanoparticles that were effectively internalized by dendritic cells. The dyes were also shown to selectively stain lipid droplets in HeLa cells, without inducing any appreciable cytotoxicity or competing plasma membrane labeling; this confirmed their potential as fluorescent stains.  相似文献   

2.
We present direct evidence of enhanced non‐radiative energy transfer between two J‐aggregated cyanine dyes strongly coupled to the vacuum field of a cavity. Excitation spectroscopy and femtosecond pump–probe measurements show that the energy transfer is highly efficient when both the donor and acceptor form light‐matter hybrid states with the vacuum field. The rate of energy transfer is increased by a factor of seven under those conditions as compared to the normal situation outside the cavity, with a corresponding effect on the energy transfer efficiency. The delocalized hybrid states connect the donor and acceptor molecules and clearly play the role of a bridge to enhance the rate of energy transfer. This finding has fundamental implications for coherent energy transport and light‐energy harvesting.  相似文献   

3.
Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as “hidden” markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2‐diazo‐1‐indanone group can be irreversibly photoactivated, either by irradiation with UV‐ or violet light (one‐photon process), or by exposure to intense red light (λ~750 nm; two‐photon mode). All dyes possess a very small 2‐diazoketone caging group incorporated into the 2‐diazo‐1‐indanone residue with a quaternary carbon atom (C‐3) and a spiro‐9H‐xanthene fragment. Initially they are non‐colored (pale yellow), non‐fluorescent, and absorb at λ=330–350 nm (molar extinction coefficient (ε)≈104 M?1 cm?1) with a band edge that extends to about λ=440 nm. The absorption and emission bands of the uncaged derivatives are tunable over a wide range (λ=511–633 and 525–653 nm, respectively). The unmasked dyes are highly colored and fluorescent (ε= 3–8×104 M?1 cm?1 and fluorescence quantum yields (?)=40–85 % in the unbound state and in methanol). By stepwise and orthogonal protection of carboxylic and sulfonic acid groups a highly water‐soluble caged red‐emitting dye with two sulfonic acid residues was prepared. Rhodamines NN were decorated with amino‐reactive N‐hydroxysuccinimidyl ester groups, applied in aqueous buffers, easily conjugated with proteins, and readily photoactivated (uncaged) with λ=375–420 nm light or intense red light (λ=775 nm). Protein conjugates with optimal degrees of labeling (3–6) were prepared and uncaged with λ=405 nm light in aqueous buffer solutions (?=20–38 %). The photochemical cleavage of the masking group generates only molecular nitrogen. Some 10–40 % of the non‐fluorescent (dark) byproducts are also formed. However, they have low absorbance and do not quench the fluorescence of the uncaged dyes. Photoactivation of the individual molecules of Rhodamines NN (e.g., due to reversible or irreversible transition to a “dark” non‐emitting state or photobleaching) provides multicolor images with subdiffractional optical resolution. The applicability of these novel caged fluorophores in super‐resolution optical microscopy is exemplified.  相似文献   

4.
The interaction of biocompatible, exponentially grown films composed of poly‐L ‐lysine (PLL) and hyaluronic acid (HA) polymers with gold nanoparticles and microcapsules is studied. Both aggregated and non‐aggregated nanoparticle states are achieved; desorption of PLL accounts for aggregation of nanoparticles. The presence of aggregates of gold nanoparticles on films enables remote activation by near‐infrared irradiation due to local, nanometer confined heating. Thermally shrunk microcapsules, which are remarkably monodisperse upon preparation but gain polydispersity after months of storage, are also adsorbed onto films. PLL polymers desorbed from films interact with microcapsules introducing a charge imbalance which leads to an increase of the microcapsule size, thus films amplify this effect. Multifunctional, biocompatible, thick gel films with remote activation and release capabilities are targeted for cell cultures in biology and tissue engineering in medicine.  相似文献   

5.
A set of linear and dissymmetric BODIPY‐bridged push–pull dyes are synthesized. The electron‐donating substituents are anisole and dialkylanilino groups. The strongly electron‐accepting moiety, a 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) group, is obtained by insertion of an electron‐rich ethyne into tetracyanoethylene. A nonlinear push–pull system is developed with a donor at the 5‐position of the BODIPY core and the acceptor at the 2‐position. All dyes are fully characterized and their electrochemical, linear and nonlinear optical properties are discussed. The linear optical properties of dialkylamino compounds show strong solvatochromic behavior and undergo drastic changes upon protonation. The strong push–pull systems are non‐fluorescent and the TCBD‐BODIPY dyes show diverse photochemistry and electrochemistry, with several reversible reduction waves for the tetracyanobutadiene moiety. The hyperpolarizability μβ of selected compounds is evaluated using the electric‐field‐induced second‐harmonic generation technique. Two of the TCBD‐BODIPY dyes show particularly high μβ (1.907 μm) values of 2050×10?48 and 5900×10?48 esu. In addition, one of these dyes shows a high NLO contrast upon protonation–deprotonation of the donor residue.  相似文献   

6.
G‐quadruplexes (G4s) are peculiar DNA or RNA tertiary structures that are involved in the regulation of many biological events within mammalian cells, bacteria, and viruses. Although their role as versatile therapeutic targets has been emphasized for 35 years, G4 selectivity over ubiquitous double‐stranded DNA/RNA, as well as G4 differentiation by small molecules, still remains challenging. Here, a new amphiphilic dicyanovinyl‐substituted squaraine, SQgl , is reported to act as an NIR fluorescent light‐up probe discriminating an extensive panel of parallel G4s while it is non‐fluorescent in the aggregated state. The squaraine can form an unconventional sandwich π‐complex binding two quadruplexes, which leads to a strongly fluorescent (Φ F=0.61) supramolecular architecture. SQgl is highly selective against non‐quadruplex and non‐parallel G4 sequences without altering their topology, as desired for applications in selective in vivo high‐resolution imaging and theranostics.  相似文献   

7.
Centrosymmetric dimers of ZnII with singly deprotonated 2‐[(2‐carbamoylhydrazin‐1‐ylidene)methyl]phenolate, [Zn2(C8H8N3O2)Cl2]·2CH3OH, form an infinite one‐dimensional hydrogen‐bonded chain which is further aggregated by non‐aromatic–aromatic π–π stacking and nonclassical N—H...Cl hydrogen bonding.  相似文献   

8.
Finger paint is a remarkable product of modern chemistry. The main components are polysaccharides of plant or semi‐synthetic origin or non‐toxic polyglycols as binders, mineral carbonates, or oxides as fillers, pigments, and/or dyes, and preservatives that delay microbiological spoilage. Since 2002 the composition has been strictly controlled under European Law especially in regard to which pigments, dyes, and preservatives are allowed. All constituents in finger paint can be regarded as safe and most of them are used in cosmetics and as food additives. In summary, finger paint is totally safe in the hands of our children.  相似文献   

9.
Emissive β‐diketones (bdks) and difluoroboron complexes (BF2bdks) show multi‐stimuli responsive luminescence in both solution and the solid state. A series of bdk ligands and boron coordinated dyes were synthesized with different cyclic amine substituents in the 4‐position to explore ring size effects on various luminescent properties, including solvatochromism, viscochromism, aggregation‐induced emission (AIE), mechanochromic luminescence (ML) and halochromism. Red‐shifted absorption and emission were observed in CH2Cl2 for both bdk ligands and boron dyes with increasing substituent ring size. The compounds displayed bathochromic emission in more polar solvents, and higher fluorescence intensity in more viscous media. The AIE compounds exhibited enhanced emission when aggregated. For solid‐state properties, a large emission wavelength shift was shown for the piperidine substituted bdk after melt quenching on weighing paper. Large blue‐shifted emissions were observed in all the boron dye spin cast films after trifluoroacetic acid vapor annealing, and the original emissions were partially recovered after triethylamine vapor treatment.  相似文献   

10.
Diarylethene 1 equipped with two monotopic melamine hydrogen‐bonding sites and oligothiophene‐functionalized ditopic cyanurate (OTCA) were mixed in a nonpolar solvent to form AA‐BB‐type supramolecular co‐polymers (SCPs) bearing photoswitchable moieties in their main chains and extended π systems as side chains. UV/Vis, fluorescence, dynamic light scattering (DLS), TEM, and AFM studies revealed that the two functional co‐monomers formed flexible quasi‐one‐dimensional SCPs in solution that hierarchically self‐organized into helical nanofibers through H‐aggregation of the oligothiophene side chains. Upon irradiating the SCPs with UV light, a transition occurred from the H‐aggregated state to non‐aggregated monomeric oligothiophene side chains, as shown by spectroscopic studies, which indicates the formation of small oligomeric species held together only by hydrogen‐bonding interactions. TEM and AFM visualized unfolded fibrils corresponding to elongated single SCP chains formed upon removal of solvent. The helical nanofibers were regenerated upon irradiating the UVirradiated solution with visible light. These results demonstrated that the supramolecular polymerisation followed by hierarchical organization can be effectively controlled by proper supramolecular designs using diarylethenes and π‐conjugated oligomers.  相似文献   

11.
Structurally unique π‐expanded diketopyrrolopyrroles (EDPP) were designed and synthesized. Strategic placement of a fluorene scaffold at the periphery of a diketopyrrolopyrrole through tandem Friedel–Crafts‐dehydration reactions resulted in dyes with supreme solubility. The structure of the dyes was confirmed by X‐ray crystallography verifying a nearly flattened arrangement of the ten fused rings. Despite the extended ring system, the dye still preserved good solubility and was further functionalized by using Pd‐catalyzed coupling reactions, such as the Buchwald–Hartwig amination. Photophysical studies of these new functional dyes revealed that they possess enhanced properties when compared with expanded DPPs in terms of two‐photon absorption cross‐section. It is further demonstrated that in addition to the initial diacetals, the final electrophilic cyclization step can also be applied to diketones. By placing two amine groups at peripheral positions of the resulting dyes, values of two‐photon absorption cross‐section on the level of 2000 GM around 1000 nm were achieved, which in combination with high fluorescence quantum yield (Φfl), generated a two‐photon brightness of approximately 1600 GM. These characteristics in combination with strong red emission (665 nm) make these new π‐expanded diketopyrrolopyrroles of major promise as two‐photon dyes for bioimaging applications. Finally, the corresponding N‐alkylated DPPs displayed a solid‐state fluorescence.  相似文献   

12.
Fluorescence imaging is a promising tool for the visualization of biomolecules in living systems and there is great demand for new fluorescent dyes that absorb and emit in the near‐infrared (NIR) region. Herein, we constructed three new fluorescent dyes ( NBC dyes) based on keto‐benzo[h]coumarin ( k‐BC ) and benzopyrilium salts. These dyes showed large Stokes shifts (>100 nm) and NIR emission (>800 nm). The relationship between the structures and optical properties of these dyes was further investigated by using density functional theory calculations at the B3LYP/6‐3G level of theory. Fluorescence images indicated that the fabricated dyes exhibited good photostability and low cytotoxicity and, thus, have potential applications as imaging agents in living cells and animals.  相似文献   

13.
We recently reported that fluorescent dye PB430, which consisted of a 2‐phenyl‐substituted benzophosphole P‐oxide skeleton that was reinforced by a methylene bridge, showed pronounced photostability and, thus, high utility for applications in super‐resolution stimulated emission depletion (STED) microscopy. Herein, we replaced the methylene bridge with another P=O group to 1) investigate the role of the bridging moieties; and 2) further modulate the fluorescence properties of this skeleton. We synthesized a series of phospholo[3,2‐b]phosphole‐based dyes—trans‐PO‐PB430, cis‐PO‐PB430, and trans‐PO‐PB460—all of which showed sufficient water solubility. Moreover, trans‐PO‐PB430 and trans‐PO‐PB460 exhibited intense green and orange fluorescence, respectively, and a high photostability that was comparable to that of PB430. In contrast, cis‐PO‐PB430 underwent rapid photobleaching upon continuous photoirradiation, which demonstrated the importance of steric shielding of the polycyclic skeleton by the substituents on the bridging moieties. The fluorescence properties of these dyes were insensitive to concentration, pH value, and polarity changes of the environment in solution. In addition, even in the solid state, these dyes showed strong green to orange emissions. These results demonstrate the potential utility of trans‐PO‐PB430 and trans‐PO‐PB460 as highly photostable fluorescent dyes.  相似文献   

14.
A novel series of dipolar organic dyes containing diarylamine as the electron donor, 2‐cyanoacrylic acid as the electron acceptor, and fluorene and a heteroaromatic ring as the conjugating bridge have been developed and characterized. These metal‐free dyes exhibited very high molar extinction coefficients in the electronic absorption spectra and have been successfully fabricated as efficient nanocrystalline TiO2 dye‐sensitized solar cells (DSSCs). The solar‐energy‐to‐electricity conversion efficiencies of DSSCs ranged from 4.92 to 6.88 %, which reached 68–96 % of a standard device of N719 fabricated and measured under the same conditions. With a TiO2 film thickness of 6 μm, DSSCs based on these dyes had photocurrents surpassing that of the N719‐based device. DFT computation results on these dyes also provide detailed structural information in connection with their high cell performance.  相似文献   

15.
We describe the efficient synthesis and one‐step derivatization of novel, nonfluorescent azo dyes based on the Black Hole Quencher‐3 (BHQ‐3) scaffold. These dyes were equipped with various reactive and/or bioconjugatable groups (azido, α‐iodoacetyl, ketone, terminal alkyne, vicinal diol). The azido derivative was found to be highly reactive in the context of copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reactions and allowed easy synthetic access to the first water‐soluble (sulfonated derivative) and aldehyde‐modified BHQ‐3 dyes, the direct preparation of which failed by means of conventional azo‐coupling reactions. The aldehyde‐ and α‐iodoacetyl‐containing fluorescence quenchers were readily conjugated to aminooxy‐ and cysteine‐containing peptides by the formation of a stable oxime or thioether linkage, respectively. Further fluorescent labeling of the resultant peptide conjugates with red‐ or far‐red‐emitting rhodamine or cyanine dyes through sequential and/or one‐pot bioconjugations, led to novel Förster resonance energy transfer (FRET) based probes suitable for the in vivo detection and imaging of urokinase plasminogen activator, a key protease in cancer invasion and metastasis.  相似文献   

16.
A novel series of organometallic donor–conjugated–acceptor dyes derived from ferrocene as the donor group have been synthesized via the Knoevenagel reaction of ferrocene carboxaldehyde and various active methylene compounds to give a range of dyes ranging from orange to blue–green in color. The most bathochromic dye is that derived from dialkyl thiobarbituric acid and the least is that derived from the tetralone. The dyes showed an unusual negative solvatochromism as the solvent polarity increased. All dyes synthesized are expected to have some non‐linear optical properties, as evidenced from the pronounced solvatochromism. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
A series of porphyrin sensitizers that featured two electron‐donating groups and dual anchoring groups that were connected through a porphine π‐bridging unit have been synthesized and successfully applied in dye‐sensitized solar cells (DSSCs). The presence of electron‐donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2. These new dyes were readily synthesized in a minimum number of steps in gram‐scale quantities. Optical and electrochemical data confirmed the advantages of these dyes for use as sensitizers in DSSCs. Porphyrins with electron‐donating amino moieties provided improved charge separation and better charge‐injection efficiencies for the studied dual‐push–pull dyes. Attenuated total reflectance–Fourier‐transform infrared (ATR‐FTIR) and X‐ray photoelectron spectroscopy of the porphyrin dyes on TiO2 suggest that both p‐carboxyphenyl groups are attached onto TiO2, thereby resulting in strong attachment. Among these dyes, cis-Zn2BC2A , with two electron‐donating 3,6‐ditertbutyl‐phenyl‐carbazole groups and dual‐anchoring p‐carboxyphenyl groups, showed the highest efficiency of 4.07 %, with JSC=9.81 mA cm?2, VOC=0.63 V, and FF=66 %. Our results also indicated a better photostability of the studied dual‐anchored sensitizers compared to their mono‐anchored analogues under identical conditions. These results provide insight into the developments of a new generation of high‐efficiency and thermally stable porphyrin sensitizers.  相似文献   

18.
To broaden the application of aggregation‐induced emission (AIE) luminogens (AIEgens), the design of novel small‐molecular dyes that exhibit high fluorescence quantum yield (Φfl) in the solid state is required. Considering that the mechanism of AIE can be rationalized based on steric avoidance of non‐radiative decay pathways, a series of bridged stilbenes was designed, and their non‐radiative decay pathways were investigated theoretically. Bridged stilbenes with short alkyl chains exhibited a strong fluorescence emission in solution and in the solid state, while bridged stilbenes with long alkyl chains exhibited AIE. Based on this theoretical prediction, we developed the bridged stilbenes BPST[7] and DPB[7], which demonstrate excellent AIE behavior.  相似文献   

19.
Near‐infrared heptamethine cyanine dye is functionalized with pyrazole derivatives at the meso‐position to induce pH‐dependent photophysical properties. The presence of pyrazole unsubstituted at 1N‐position is essential to induce pH‐dependent fluorescence intensity and lifetime changes in these dyes. Replacement of meso‐chloro group of cyanine dye IR820 with 1N‐unsubstituted pyrazole resulted in the pH‐dependent fluorescence lifetime changes from 0.93 ns in neutral media to 1.27 ns in acidic media in DMSO. Time‐resolved emission spectra (TRES) revealed that at lower pH, the pyrazole consists of fluorophores with two distinct lifetimes, which cor‐responds to pH‐sensitive and non‐pH‐sensitive species. In contrast, 1N‐substituted pyrazoles do not exhibit pH response, suggesting excited state electron transfer as the mechanism of pH‐dependent fluorescence lifetime sensitivity for this class of compounds.  相似文献   

20.
Near‐infrared (NIR) fluorescent dyes with favorable photophysical properties are highly useful for bioimaging, but such dyes are still rare. The development of a unique class of NIR dyes via modifying the rhodol scaffold with fused tetrahydroquinoxaline rings is described. These new dyes showed large Stokes shifts (>110 nm). Among them, WR3, WR4, WR5, and WR6 displayed high fluorescence quantum yields and excellent photostability in aqueous solutions. Moreover, their fluorescence properties were tunable by easy modifications on the phenolic hydroxy group. Based on WR6, two NIR fluorescent turn‐on probes, WSP‐NIR and SeSP‐NIR, were devised for the detection of H2S. The probe SeSP‐NIR was applied in visualizing intracellular H2S. These dyes are expected to be useful fluorophore scaffolds in the development of new NIR probes for bioimaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号