首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Employing the enhanced sensitivity obtained by using synchrotron radiation near the Cooper minimum for the 5d valence electrons, we have located the oxygen 2p and 2s levels for oxygen chemisorbed on a Pt 6(111) × (100) crystal. We find the oxygen 2p level located ?6 eV with a FWHM of 3 eV and the 2s at ?21.6 eV. A factor of four difference in saturation coverage is measured between temperatures of 300 and 120 K, but the position and width of the 2p level is independent of temperature. We observe also the 1b1 orbital of weakly adsorbed H2O molecules, which has pure O 2p parentage; from the intensity of this orbital, we are able to suggest why it is difficult to observe the oxygen 2p signal at low photon energies. In addition, we note a strong preferential attenuation in the Pt states near Ef for the adsorbed H2O in spite of the weak nature of the bond.  相似文献   

2.
Self-consistent Hartree-Fock-Slater molecular cluster calculations for the chemisorption of carbon monoxide on a Ni(100) surface are presented. In earlier calculations of this type the CO molecule has been assumed to be chemisorbed in a hollow position of C4v symmetry. A recent EELS experiment shows however that in the most stable configuration CO is linearly bonded to the Ni atoms, i.e. a top position of the CO-molecule. This experiment indicates also that there exists an additional bridge bonding of the CO molecule to the two nearest neighbour Ni atoms. The variation of the energy levels, binding energies and charge distribution with the height of the CO molecule above the nickel surface is calculated for the top position using the NiCO and Ni5CO clusters and for the bridge bonding configuration using the Ni2CO cluster. The CO 1π level is found to be split by about 0.8 eV in bridge bonding geometry. For both hollow and top positions the 1π and 5σ levels are separated by about 0.5 eV. The energy separation to the 4σ level is about 3 eV, which is in good agreement with experimental data. Theoretical ionization energies relative to the Fermi energy for top position geometry at a bond distance of 3.5 au between the carbon atom and nickel surface were found to be 25.7, 11.7, 8.7 and 8.2 eV for the 3σ, 4σ, 5σ and 1π levels which should be compared with the experimental data of 29.0, 10.8, 8.4 and 7.8 eV, respectively. The corresponding ionization energies for a bond angle of 99° in bridge bonding were 23.7, 12.1, 7.3, 7.0 and 7.9 eV. The two last values represent the 1π level which is split into two levels in this geometry. The variation of the C-O stretch vibrational frequencies with the height of the CO molecule above the surface for the top-position geometry is estimated from the 5σ and 2π gross orbital populations and from the CO σ and π overlap populations.  相似文献   

3.
《Surface science》1990,236(3):L372-L376
A new low temperature displacement mechanism for CO on the Pt(111) surface has been observed in the presence of high pressures of hydrogen (0.001 to 0.1 Torr H2). Temperature-programmed fluorescence yield near-edge spectroscopy (TP FYNES) was used to continuously monitor the CO coverage as a function of temperature both with and without hydrogen. For hydrogen pressures above 0.01 Torr, removal of CO begins at 130 K (Ed = 10.6 kcal/mol) instead of near the desorption temperature of 400 K (Ed = 26 kcal/mol). The large decrease in CO desorption energy appears to be caused by substantial repulsive interactions in the compressed monolayer induced by coadsorbed hydrogen. The new low temperature CO desorption channel appears to be caused by displacement of the compressed CO adlayer by coadsorbed hydrogen. In addition, the desorption activation energy for the main desorption channel of CO near 400 K is lowered by ~ 1 kcal/mol for hydrogen pressures in the 0.001 to 0.1 Torr range. These new results clearly emphasize the importance of in-situ methods capable of performing kinetic experiments at high pressures on well characterized adsorbed monolayers on single crystal surfaces. High coverages of coadsorbed hydrogen resulting from substantial overpressures may substantially modify desorption activation energies and thus coverages and kinetic pathways available even for strongly chemisorbed species. These phenomena may play an important role in surface reactions which occur at high pressure.  相似文献   

4.
Chemisorption of NO and NH3 on cobalt has been studied by UV and X-ray photoelectron spectroscopy (UPS and XPS) and work-function measurements. The 25°C data for NO are consistent with dissociative chemisorption below ~5 L exposure followed by molecular chemisorption at higher exposures; complete dissociation occurs after heating to 500°C. The UPS of molecularly chemisorbed NO exhibit peaks at ~2.7, 10.2 and 14 eV below EF, corresponding to ionization of the 2π*, (1π + 5σ), and 4σ MO's. The UPS data for NH3 exhibit peaks at 7.9 and 11.4 eV below EF, consistent with ionization of the 3a1 and 7e MO's of NH3 and/or MO's of the fragments NH2 and/or NH.  相似文献   

5.
X-ray photoelectron spectroscopy (ESCA) has been used in a study of N2 and NO adsorbed on a polycrystalline tungsten ribbon. The sample was flash cleaned under ultrahigh vacuum conditions, and cooled to either 300 K or 100 K for the adsorption studies. Large chemical shifts, as great as 8 eV, were observed between the N (1s) spectra associated with the weakly chemisorbed γ-nitrogen states and the strongly chemisorbed β-nitrogen states. Chemical shifts in both the N(1s) and O(1s) spectra suggest that NO is largely non-dissociatively chemisorbed at 100 K. In general, the binding energies of N(1s) and O(1s) electrons in the adsorbed layers are smaller than the binding energies for the same atoms in small gaseous molecules. In addition, the binding energies associated with the weakly-bound states of NO and N2 are invariably greater than the binding energies associated with strongly chemisorbed species.  相似文献   

6.
The bremsstrahlung isochromat (or inverse photoemission) spectrum of CO chemisorbed on a Cu(110) surface has been investigated. An empty level derived from the CO 2 π orbital was found at an energy of 0.9 eV below the vacuum level Evac and to have a halfwidth varying from 1.9 to 2.6 eV as a function of increasing coverage. The energetic position of the empty level is discussed in connection with photoemission data for occupied bands and excitation energies from electron energy loss measurements.  相似文献   

7.
A new CO2 formation process was observed in the CO oxidation over Pt(111) surface below 200 K. The desorption flux of the product CO2, which is formed from the interaction between chemisorbed CO and adsorbed oxygen molecules O22? (a), showed a very sharp angular distribution along the surface normal.  相似文献   

8.
The electronic structure of the valence bands of polycrystalline films of pyridine (C5H5N), including all valence levels extending from initial energies of 4 down to 30 eV (EVAC = 0), has been determined from photoelectron energy distribution measurements for photon energies 20eV ? hν ? 170 eV, using synchrotron radiation. The valence bands showing a one-to-one correspondence to the gas phase, a rigid relaxation shift of δer = 0.3 eV for the vertical binding energies, and a considerable solid state broadening (? 0.5 eV) are assigned in comparison to recent MO calculations. By tuning the photon energy and thereby achieving high surface sensitivity for hν around 45 eV, we have also studied pyridine adsorbed at 120 K (6 Langmuir) on in situ prepared polycrystalline Ag-substrates. Thus, we were able to study in detail the surface electronic structure in the range of the Ag 4d bands. Due to a strong mixing of substrate 4d and pyridine 2b1 (π), 1a2 (π) and 7a1 (n) energy levels, the surface electronic structure is strongly modified in the upper part of the 4d bands, and a strong and sharp (0.4 eV FWHM) surface resonance at an energy of 3.7 e V below EAGF is observed, which we attribute to a 4d-7a1 (n) bonding of the nitrogen lone-pair orbital.  相似文献   

9.
It is shown that XPS can detect 0.01 monolayers of adsorbed carbon or oxygen and can identify the chemical state of the adsorbed atom(s). Two states of adsorbed oxygen were resolved by thermal desorption spectroscopy and by XPS. The O 1s binding energies (FEB) were 530.2 and 533 eV below the platinum Fermi level for the strongly and weakly adsorbed states respectively. (FEB) did not vary with coverage. The resulting apparent variation of (VEB), the vacuum level referenced value, is discussed in terms of a simple model for the work function Φ which was measured in situ. UPS indicated that the weakly adsorbed state is probably molecular, with levels at 6.1, 9.3, 10.4 and l2.4 eV below the Fermi level. The main change in the UPS spectra produced by the strongly adsorbed state was a reduction of a peak close to the Fermi level.  相似文献   

10.
The equilibrium hydrogen exchange rate between adsorbed and gas phase hydrogen at 1 bar is measured for Pt, Ru and Rh nanoparticles supported on a sputtered HOPG substrate. The particles are prepared by Electron Beam Physical Vapor Deposition and the diameter of the particles varies between 2 and 5 nm. The rate of hydrogen exchange is measured in the temperature range 40–200 °C at 1 bar, by utilization of the H–D exchange reaction. We find that the rate of hydrogen exchange increases with the particle diameter for all the metals, and that the rate for Ru and Rh is higher than for Pt. In the case of Pt, the equilibrium dissociative sticking probability, S, is found to be nearly independent of particle diameter. For Ru and Rh, S is found to depend strongly on particle diameter, with the larger particles being more active. The apparent energy of desorption at equilibrium, Eapp, shows a dramatic increase with decreasing particle diameter for diameters below 5 nm for Ru and Rh, whereas Eapp is only weakly dependent on particle diameter for Pt. We suggest that the strong variation in the apparent desorption energy with particle diameter for Ru and Rh is due to the formation of compressed hydrogen adlayers on the terraces of the larger particles. Experiments are also carried out in the presence of 10 ppm CO. Pt is found to be very sensitive to CO poisoning and the H–D exchange rate drops below the detection limit when CO is added to the gas mixture. In the case of Ru and Rh nanoparticles, CO decreases the splitting rate significantly, also at 200 °C. The variation of the sensitivity to CO poisoning with particle diameter for Ru and Rh is found to be weak.  相似文献   

11.
Electron energy loss spectroscopy (ELS) in the energy range of electronic transitions (primary energy 30 < E0 < 50 eV, resolution ΔE ≈ 0.3 eV) has been used to study the adsorption of CO on polycrystalline surfaces and on the low index faces (100), (110), (111) of Cu at 80 K. Also LEED patterns were investigated and thermal desorption was analyzed by means of the temperature dependence of three losses near 9, 12 and 14 eV characteristic for adsorbed CO. The 12 and 14 eV losses occur on all Cu surfaces in the whole coverage range; they are interpreted in terms of intramolecular transitions of the CO. The 9 eV loss is sensitive to the crystallographic type of Cu surface and to the coverage with CO. The interpretation in terms of d(Cu) → 2π1(CO) charge transfer transitions allows conclusions concerning the adsorption site geometry. The ELS results are consistent with information obtained from LEED. On the (100) surface CO adsorption enhances the intensity of a bulk electronic transition near 4 eV at E0 < 50 eV. This effect is interpreted within the framework of dielectric theory for surface scattering on the basis of the Cu electron energy band scheme.  相似文献   

12.
Photoemission spectra in the photon energy range 15 eV to 30 eV on clean Ir(100) show considerable dependence of spectral structure on photon energy. In addition, phtoionization cross-sections for the 4σ, 1π and 5σ levels of chemisorbed CO are strongly dependent on the polarization of the incident radiation. Finally, analysis of a broad body of published data on CO chemisorption for many metals in addition to that of this study leads to the conclusion that the separation in energy between the 4σ and 1π peaks of chemisorbed CO varies systematically with the position of the adsorbent in the Periodic Table. This is ascribed to a systematic geometrical stretching of the bonds in the adsorbate. The susceptibility of the CO molecule to discociation upon chemisorption is also found to vary systematically depending on the position of the adsorbent in the Periodic Table.  相似文献   

13.
Electron energy loss spectroscopy (ELS) with primary energies e0 ? 80 eV has been performed on ultrahigh vacuum (UHV) cleaved nonpolar (11?00) and polar zinc (0001) and oxygen (0001?) surfaces of ZnO to study the adsorption of oxygen and carbon monoxide. Except for CO on the nonpolar surface where no spectral changes in ELS are observed a surface transition near 11.5 eV is strongly affected at 300 K on all surfaces by CO and O2. At 300 K clear evidence for new adsorbate characteristic transitions is found for oxygen adsorbed on the Zn polar surface near 7 and 11 eV. At 100 K on all three surfaces both CO and O2 adsorb in thick layers and produce loss spectra very similar to the gas phase, thus indicating a physisorbed state.  相似文献   

14.
Using dynamic LEED measurements of spot intensities and profiles, together with thermal desorption data, we have investigated the oxidation of CO on Pt(100)?(1 × 1). At T = 355 K, either CO or O was preadsorbed and reacted off with the other species. Results from both titration sequences point to the following conclusions: Titration of preadsorbed oxygen with COg leads to rapid reaction, with a reaction probability of unity for each chemisorbed CO. Adsorbed CO does not accumulate on the surface until θo ? 0.05, i.e. an intermediate, rather clean (1 × 1) Pt surface is obtained. Further evidence for this clean intermediate is provided by the fact that characteristics of the diffraction spots of the c(2 × 2) of CO develop identically during this reaction sequence and during adsorption of CO on a clean (1 × 1) Pt surface. In the reverse case, titration of preadsorbed CO with O2,g, the reaction rate is slower than the oxygen adsorption rate, leading to a pressure-dependent development of coexisting Oad and COad domains, which we observe directly with LEED. The stable phases coexisting are the c(2 × 2) of CO and the oxygen-related (3 × 1). Thermal desorption peak shapes, together with LEED observations, indicate that the CO in this case is held in c(2 × 2) islands by a matrix of surrounding oxygen atoms. In no case do mixed structures form, nor is an existing structure compressed by subsequent adsorption of the second species. Starting from a Langmuir-Hinshelwood mechanism, the differences between the two reaction sequences are discussed in terms of different activation barriers for reaction and different sticking coefficients of the adsorbing species. Special attention is given to the mobilities of the adsorbed reactants.  相似文献   

15.
李敏  张俊英  张跃  王天民 《中国物理 B》2012,21(6):67302-067302
The adsorptions of CO and 02 molecules individually on the stoichiometric Cu-terminatcd Cu20 (111) surface are investigated by first-principles calculations on the basis of the density functional theory. The calculated results indicate that the CO molecule preferably coordinates to the Cu2 site through its C atom with an adsorption energy of-1.69 eV, whereas the 02 molecule is most stably adsorbed in a tilt type with one O atom coordinating to the Cu2 site and the other O atom coordinating to the Cul site, and has an adsorption energy of -1.97 eV. From the analysis of density of states, it is observed that Cu 3d transfers electrons to 2π orbital of the CO molecule and the highest occupied 5σ orbital of the CO molecule transfers electrons to the substrate. The sharp band of Cu 4s is delocalized when compared to that before the CO molecule adsorption, and overlaps substantially with bands of the adsorbed CO molecule. There is a broadening of the 2π orbital of the 02 molecule because of its overlapping with the Cu 3d orbital, indicating that strong 3d-2π interactions are involved in the chemisorption of the 02 molecule on the surface.  相似文献   

16.
The H2/Pt(111) system has been studied with LEED, ELS, thermal desorption spectroscopy and contact potential measurements. At 150 K H2 was found to adsorb with an initial sticking coefficient of about 0.1, yielding an atomic H:Pt ratio of about 0.8:1 at saturation. H2/D2 exchange experiments gave evidence that adsorption is completely dissociative. No exrea LEED spots due to adsorbed hydrogen were observed, but the adsorbate was found to strongly damp the secondary Bragg maxima in the I/V spectrum of the specular beam. The primary Bragg maxima were slightly increased in intensity and shifted to somewhat lower energy. A new characteristic electron energy loss at ?15.4 eV was recorded upon hydrogen adsorption. The thermal desorption spectra were characterized by a high temperature (β2-) state desorbing with second order kinetics below 400 K and a low temperature (β2-) state that fills up, in the main, after the first peak saturates. The β2-state is associated with an activation energy for desorption E1 of 9.5 kcal/mole. The decrease E1 with increasing coverage and the formation of the β1-state are interpreted in terms of a lateral interaction model. The anomalous structure in the thermal desorption spectra is attributed to domains of non-equilibrium configuration. The work function change Δ? was found to have a small positive maximum (~ 2 mV) at very low hydrogen doses (attributed to structural imperfections) and then to decrease continuously to a value of ?230 mV at saturation. The variation of Δ? with coverage is stronger than linear. The isosteric heats of adsorption as derived from adsorption isotherms recorded via Δ? compared well with the results of the analysis of the thermal desorption spectra.  相似文献   

17.
Theoretical energy level spectra calculated by the localised orbital pseudopotential method are presented for chemisorbed O, S, Se and Te monolayers on Ni(001). Adsorption-induced features are a band of bonding states 2–3 eV wide centred ≈ 4 eV below Ef and a band of states centred near Ef. Supporting experimental evidence is discussed.  相似文献   

18.
Mine A. Gülmen 《Surface science》2006,600(21):4909-4921
The adsorption properties of CO on Pt3Sn were investigated by utilizing quantum mechanical calculations. The (1 1 1), (1 1 0) and (0 0 1) surfaces of Pt3Sn were generated with all possible bulk terminations, and on these terminations all types of active sites were determined. The adsorption energies and the geometries of the CO molecule at those sites were found. Those results were compared with the results obtained from the adsorption of CO on similar sites of Pt(1 1 1), Pt(1 1 0) and Pt(0 0 1) surfaces. The comparison reveals that adsorption of CO is stronger on Pt surfaces; this may be the reason why catalysts with Pt3Sn phase do not suffer from CO posioning in experimental works. Aiming to understand the interactions between CO and the metal adsorption sites in detail, the local density of states (LDOS) profiles were produced for atop-Pt adsorption, both for the carbon end of CO for its adsorbed and free states, and for the Pt atom of the binding site. LDOS profiles of C of free and adsorbed CO and Pt for corresponding pure Pt surfaces, Pt(1 1 1), Pt(1 1 0) and Pt(0 0 1) were also obtained. The comparison of the LDOS profiles of Pt atoms of atop adsorption sites on the same faces of bare Pt3Sn and Pt surfaces showed the effect of alloying with Sn on the electronic properties of Pt atoms. Comparison of LDOS profiles of the C end of CO in its free and atop adsorbed states on Pt3Sn and LDOS of Pt on bare and CO adsorbed Pt3Sn surface were used to clear out the electronic changes occurred on CO and Pt upon adsorption. The study showed that (i) inclusion of a Sn atom at the adsorption site structure causes dramatic decrease in stability which limits the number of possible CO adsorption sites on Pt3Sn surface, (ii) the presence of Sn causes angles different from 180° for M-C-O orientation, (iii) the presence of Sn in the neighborhood of Pt on which CO is adsorbed causes superposition of the 5σ/1π derived-state peaks at the carbon end of CO and changes in adsorption energy of CO, (iv) Sn present beneath the adsorption site strengthens the CO adsorption, whereas neighboring Sn on the surface weakens it for all Pt3Sn surfaces tested and (v) the most stable site for CO adsorption is the atop-Pt site of the mixed atom termination of Pt3Sn(1 1 0).  相似文献   

19.
The adsorption, desorption, surface structural chemistry, and electron impact properties of CO on Rh(110) have been studied by LEED, Auger spectroscopy, thermal desorption, and surface potential measurements. At 300 K, CO adsorbs into a single chemisorbed state whose desorption energy (Ed) is ~130kJmol-1. The initial sticking probability is unity, and at saturation coverage a (2 × 1)plgl ordered phase reaches its maximum degree of perfection, thus demonstrating that this CO structure is common to the (110) faces of all the cubic platinum group metals. The saturated adlayer corresponds to θ = 1 and shows a surface potential of Δ? = +0.97 V. Under electron impact, desorption and dissociation of CO occur with about equal probability, the relevant cross sections being ~10-22 m2 in each case. Slow thermal dissociation of CO occurs at high temperature and pressure, leaving a deposit of C and O atoms on the surface. The thermal, electron impact, and Δ? properties of Rh(110)CO resemble those of Ni(110)CO rather closely, and are very different from those of Pt(110)CO. Surface carbon is shown to inhibit CO chemisorption, whereas surface oxygen appears to lead to the formation of a new more tightly bound form of CO with a considerably enhanced desorption energy (Ed ~ 183 kJmol-1). Similar oxygen-induced high temperature CO states have been reported recently on Co(0001) and Ru(101&#x0304;1).  相似文献   

20.
A molecular orbital study was made, using an atom superposition and electron delocalization (ASED) technique, of the structures and energy levels of CO on Pt(111) surface. CO is predicted to be preferentially adsorbed at a height of 2.05 Å from the surface at a 1-fold position with the carbon end down. The calculated binding energy (1.7 eV) is in good agreement with the recent experimental result (1.5 eV) of Campbell et al. Calculated binding energies for bridging (1.3 eV) and high coordinate (1.1 eV) sites are predicted to be smaller in magnitude. Calculated results are used to discuss the ordering of energy levels of adsorbed CO. The interaction between CO (adsorbed) and O (adsorbed) has been studied to estimate the energy of activation for the oxidation of CO on Pt(111) surface. The calculated activation energy (1.6 eV) is in reasonable agreement with the recent experimental result (1 eV) of Campbell et al. The Langmuir-Hinshelwood mechanism is found to be favored. We predict CO2 bonds vertically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号