首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collisions of high Mach number flows occur frequently in astrophysics, and the resulting shock waves are responsible for the properties of many astrophysical phenomena, such as supernova remnants, Gamma Ray Bursts and jets from Active Galactic Nuclei. Because of the low density of astrophysical plasmas, the mean free path due to Coulomb collisions is typically very large. Therefore, most shock waves in astrophysics are “collisionless”, since they form due to plasma instabilities and self-generated magnetic fields. Laboratory experiments at the laser facilities can achieve the conditions necessary for the formation of collisionless shocks, and will provide a unique avenue for studying the nonlinear physics of collisionless shock waves. We are performing a series of experiments at the Omega and Omega-EP lasers, in Rochester, NY, with the goal of generating collisionless shock conditions by the collision of two high-speed plasma flows resulting from laser ablation of solid targets using ∼1016 W/cm2 laser irradiation. The experiments will aim to answer several questions of relevance to collisionless shock physics: the importance of the electromagnetic filamentation (Weibel) instabilities in shock formation, the self-generation of magnetic fields in shocks, the influence of external magnetic fields on shock formation, and the signatures of particle acceleration in shocks. Our first experiments using Thomson scattering diagnostics studied the plasma state from a single foil and from double foils whose flows collide “head-on”. Our data showed that the flow velocity and electron density were 108 cm/s and 1019 cm−3, respectively, where the Coulomb mean free path is much larger than the size of the interaction region. Simulations of our experimental conditions show that weak Weibel mediated current filamentation and magnetic field generation were likely starting to occur. This paper presents the results from these first Omega experiments.  相似文献   

2.
This paper reports the results of numerical studies of axisymmetric flows in a coaxial plasma accelerator in the presence of a longitudinal magnetic field. The calculations were performed using a two-dimensional two-fluid magnetohydrodynamic model taking into account the Hall effect and the conductivity tensor of the medium. The numerical experiments confirmed the main features of the plasmadynamic processes found previously using analytical and one-fluid models and made it possible to study plasma flows near the electrodes. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 44–55, May–June, 2009.  相似文献   

3.
A new type of flow in a magnetic fluid has been experimentally detected and investigated. The interaction between an alternating nonuniform magnetic field and a magnetic fluid leads to the parametric excitation of traveling capillary-gravitational waves which are the direct cause of the average flow. A necessary condition of formation of hydrodynamic flows in an alternating field is also the presence of time-dependent harmonics with multiple frequencies synchronized with the first harmonic, so that the time dependence of the ponderomotive force is generally pulsed. It is shown that for plane vibrational flows the classical theory cannot explain the high intensity of the average flows observed. It is suggested that the high intensity of magnetovibrational flows is related to the violation of the cylindrical symmetry of the traveling capillary-gravitational waves and the transition to a three-dimensional motion. Perm’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 124–133, January–February, 1998.  相似文献   

4.
The plasma is inviscid, cool, and not thermally conducting; it flows in a channel of constant cross section. The solution is derived by the small parameter method, for which purpose the magnetic interaction N is used. There have been previous studies of the transient-state flow of an inviscid and thermally nonconducting plasma in crossed electric and magnetic fields [1–3]. A plasma of infinite conductivity has been considered [1], as well as flow involving entropy change in an MHD system with strong electromagnetic fields [2, 3].  相似文献   

5.
This paper considers the interaction between an absolutely rigid wall or a steel plate and the rarefaction wave arising in solid deuterium when a 30–150 GPa shock wave arrives at the free surface. It is shown that, in the entropy trace near the wall or interface with the plate, a high-temperature plasma arises, in which a thermonuclear fusion is possible, at least, for shock-wave pressures above 70 GPa. The dimension of the plasma region and the time of its establishment are proportional to the distance between the free surface and the wall. Estimates of the proportionality coefficients are given. It is noted that, in this case, unlike in other methods of high-temperature plasma generation, the time of existence of the plasma may not depend on the sound velocity in it. It is shown that, by using a conical solid-state target wit an exit hole, the shock-wave pressure in solid deuterium can be increased from 10 to 100 GPa. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 15–24, May–June, 2009.  相似文献   

6.
The convective flows of a binary mixture in connected channels heated from below are studied experimentally. In contrast to homogeneous fluids, in magnetic colloids “hard” convection excitation, specific transient flows, and oscillatory convection regimes can be observed. The temperature fields and concentration inhomogeneities are measured.  相似文献   

7.
Using a numerical weather forecasting code to provide the dynamic large-scale inlet boundary conditions for the computation of small-scale urban canopy flows requires a continuous specification of appropriate inlet turbulence. For such computations to be practical, a very efficient method of generating such turbulence is needed. Correlation functions of typical turbulent shear flows have forms not too dissimilar to decaying exponentials. A digital-filter-based generation of turbulent inflow conditions exploiting this fact is presented as a suitable technique for large eddy simulations computation of spatially developing flows. The artificially generated turbulent inflows satisfy the prescribed integral length scales and Reynolds-stress-tensor. The method is much more efficient than, for example, Klein’s (J Comp Phys 186:652–665, 2003) or Kempf et al.’s (Flow Turbulence Combust, 74:67–84, 2005) methods because at every time step only one set of two-dimensional (rather than three-dimensional) random data is filtered to generate a set of two-dimensional data with the appropriate spatial correlations. These data are correlated with the data from the previous time step by using an exponential function based on two weight factors. The method is validated by simulating plane channel flows with smooth walls and flows over arrays of staggered cubes (a generic urban-type flow). Mean velocities, the Reynolds-stress-tensor and spectra are all shown to be comparable with those obtained using classical inlet-outlet periodic boundary conditions. Confidence has been gained in using this method to couple weather scale flows and street scale computations.  相似文献   

8.
The problem of sub-Alfvén expansion of a superconducting plasma sphere in a homogeneous magnetized background is considered. The specifics of a self-consistent model of a low-frequency linear MHD approximation that we used in the present paper is the simultaneous allowance for the energy necessary for maintaining the field and plasma equilibrium at a moving boundary and the additional perturbation of a decelerating field generated by the currents induced in a background plasma. This has allowed us to clarify significantly the dependence of the radiated magnetohydrodynamic energy on the Mach-Alfvén number. We found and calibrated universal dynamic characteristics on the basis of which we developed new techniques for determining the initial energy and the velocities of expansion of an explosive plasma cloud with the use of the peak values of magnetic signals in the near (quasistatic), transient, and wave zones. The possibility of effective application of these techniques in experiments on laser-plasma cloud generation in a vacuum homogeneous magnetic field is shown. Institute of Laser Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 3, pp. 3–13, May–June, 1998.  相似文献   

9.
Gas flows inside and around rapidly rotating bodies made of cellular-porous materials are studied numerically and experimentally. Within the framework of the previously proposed physicomathematical model, an appropriate numerical algorithm is developed and tested. Internal flows and a conjugate problem with the external flow are considered. The calculated moment and dynamic pressure are in good agreement with experimentally measured characteristics of a rotating porous disk on a solid substrate. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 1, pp. 46–57, January–February, 2006.  相似文献   

10.
The article discusses plane stationary slowly varying flows of a nonviscous plasma with good conductivity in a channel in a transverse magnetic field; the flows are accompanied by blowing in and pumping plasma across solid metallic electrodes. The Hall effect is taken into consideration. It is shown that the potential jump near the anode, which appears in an accelerated plasma flow in an ordinary channel with solid electrodes, can be eliminated in flows accompanied by blowing in (pumping) of plasma. It is also shown that flows are possible in which the velocity, density, and the transverse electric field increase in the direction of the accelerator cathode.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 26–34, November–December, 1970.  相似文献   

11.
 The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions. Received on 22 March 1999  相似文献   

12.
Design for structural integrity requires an appreciation of where stress singularities can occur in structural configurations. While there is a rich literature devoted to the identification of such singular behavior in solid mechanics, to date there has been relatively little explicit identification of stress singularities caused by fluid flows. In this study, stress and pressure singularities induced by steady flows of viscous incompressible fluids are asymptotically identified. This is done by taking advantage of an earlier result that the Navier-Stokes equations are locally governed by Stokes flow in angular corners. Findings for power singularities are confirmed by developing and using an analogy with solid mechanics. This analogy also facilitates the identification of flow-induced log singularities. Both types of singularity are further confirmed for two global configurations by applying convergence-divergence checks to numerical results. Even though these flow-induced stress singularities are analogous to singularities in solid mechanics, they nonetheless render a number of structural configurations singular that were not previously appreciated as such from identifications within solid mechanics alone.  相似文献   

13.
The development of the tearing instability is studied in the presence of a high toroidal magnetic field and a high plasma conductivity. The variation of the plasma density is shown to be significant in this case. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 2, pp. 3–9, March–April, 1998.  相似文献   

14.
Hydrodynamic problems of fluid flow with three-phase contact lines (for example, solid body-liquid-gas or solid body and two nonmixing liquids) are of special interest. Much attention has been paid lately to steady and quasisteady flows. Significantly unsteady problems of this kind have almost escaped consideration. In the present paper, we study a model problem of a significantly unsteady motion of a finite volume of an incompressible fluid with a three-phase contact line. The static contact angle is assumed to be right and the initial free surface of the liquid is assumed to be cylindrical. One of the planes instantaneously begins to move toward the other with a constant finite velocity. Flows with high Reynolds numbers and small capillary numbers are considered. Mass forces are ignored in the problem. The basic result is the construction of a formal asymptotic of the solution at small times. Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 4, pp. 51–61, July–August, 1999.  相似文献   

15.
Particle image velocimetry was used to study the structure of stationary acoustic flows on a solid surface subjected to acoustic radiation along the normal to the prefocal and postfocal planes of a spherical concentrator. The results of model experiments were used for rapid growth of water-soluble single crystals. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 11–17, July–August, 2009.  相似文献   

16.
17.
A model of dynamics and heating of a plasma cloud in a magnetic field is considered in a two-temperature approximation. Based on a predictor-corrector-type implicit difference scheme, spreading of a plasma cloud in an external magnetic field is numerically simulated, and the influence of this field on spread dynamics is evaluated. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 121–132, May–June, 2007.  相似文献   

18.
The mechanism of self-sustained oscillations in laminar cavity flows has been well characterized; however, the occurrence of self-sustained oscillations in turbulent cavity flows has only previously been characterized by direct observation of flows. Here, the quantitative characteristics of vortical structures in turbulent flows over an open cavity were determined, and then statistical properties were examined for evidence of self-sustained oscillations. Specifically, instantaneous velocity fields were measured using PIV and wall pressure fluctuations were determined from microphone data. Cavity geometries of L/= 1 and 2, where L and D are the length and depth of the cavity, respectively, were used under conditions where the incoming boundary layer was turbulent at Re θ  = 830. Statistical analyses were applied based on the instantaneous velocity fields of PIV data. The spatial distributions of vertical velocity correlations (v–v) showed alternating patterns that reflect the organized nature of the large-scale vortical structures corresponding to the modes of = 2 for L/= 1 and = 3 for L/= 2. These values were consistent with the numbers of vortical structures obtained from a modified version of Rossiter’s equation. Furthermore the numbers of vortical structures determined in the statistical analyses were consistently observed in instantaneous distributions of the swirling strength (λ ci). The incoming turbulent boundary layer can give rise to the formation of large-scale vortical structures responsible for self-sustained oscillations.  相似文献   

19.
Hang Xu  Shi-Jun Liao 《Meccanica》2006,41(6):599-609
The series solutions of unsteady flows of a viscous incompressible electrically conducting fluid caused by an impulsively rotating infinite disk are given by means of an analytic technique, namely the homotopy analysis method. Using a set of new similarity transformations, we transfer the Navier–Stokes equations into a pair of nonlinear partial differential equations. The convergent series solutions are obtained, which are uniformly valid for all dimensionless time 0 ≤ τ < ∞ in the whole spatial region 0 ≤ η < ∞. To the best of our knowledge, such kind of series solutions have never been reported. The effect of magnetic number on the velocity is investigated.  相似文献   

20.
Gas production from underground storage reservoirs is sometimes associated with solid particles eroded from the rock matrix. This phenomenon often called sand production can cause damage to the storage equipments, leading the operator to choke the wells and prevent them from producing at full capacity. Colloid release is often associated as a precursor of larger solid production. Indeed, in sandstone storage sites, clay release induced by the presence of condensed water associated with the gas production in the near-wellbore region can be a forecast of intergranular cement erosion. The objective of this work is twofold: firstly to experimentally investigate colloidal particle detachment through ionic strength reduction (absence of salinity of the condensed water) in porous media and secondly to determine its evolution with time and to model it. Laboratory experiments with model systems are developed to reproduce the particle generation and their transport in porous media. The model porous medium is a packed column of two powders: silicon carbide particles of 50 μm and silica particles of 0.5 μm (3% by weight) initially mixed together. Brine flows at different concentrations are imposed through the porous sample and, at very low salt concentration, colloid silica particles are massively released from the medium. Experimental evolutions of the particle concentration with time are compared to solutions of the advection–dispersion equation including first-order source terms for colloid release. The dispersion coefficients of the porous medium have been determined with tracer tests. The experimental results exhibit a different behaviour at short- and long-time intervals and a model has been built to predict the colloid production evolution with the introduction of two different time scales for the eroded rate. The model can be used in a core test to evaluate the amount of detachable fines and the rate of erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号