首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Perfect fluid spacetimes admitting a kinematic self-similarity of infinite type are investigated. In the case of plane, spherically or hyperbolically symmetric space-times the field equations reduce to a system of autonomous ordinary differential equations. The qualitative properties of solutions of this system of equations, and in particular their asymptotic behavior, are studied. Special cases, including some of the invariant sets and the geodesic case, are examined in detail and the exact solutions are provided. The class of solutions exhibiting physical self-similarity are found to play an important role in describing the asymptotic behavior of the infinite kinematic self-similar models.  相似文献   

2.
We study how the constants G and Λ may vary in different theoretical models (general relativity (GR) with a perfect fluid, scalar cosmological models (SM) (“quintessence”) with and without interacting scalar and matter fields and three scalar-tensor theories (STT) with a dynamical Λ) in order to explain some observational results. We apply the program outlined in section II to study the Bianchi I models, under the self-similarity hypothesis. We put special emphasis on calculating exact power-law solutions which allow us to compare the different models. In all the studied cases we conclude that the solutions are isotropic and noninflationary. We also arrive at the conclusion that in the GR model with time-varying constants, Λ vanishes while G is constant. In the SM all the solutions are massless i.e. the potential vanishes and all the interacting models are inconsistent from the thermodynamical point of view. The solutions obtained in the STT collapse to the perfect fluid one obtained in the GR model where G is a true constant and Λ vanishes as in the GR and SM frameworks.  相似文献   

3.
在量热完全气体、热完全气体和化学反应完全气体等3种气体模型假设下,利用Mach数为4.05、壁温为1 300 K的超声速槽道湍流的直接数值模拟(direct numerical simulation,DNS)结果,对标度律和自相似性做了详细分析.结果表明,不仅在量热完全气体模型下存在标度律和扩展自相似性,而且在热完全气体和化学反应完全气体模型下标度律和扩展自相似性仍然成立.压缩性的影响使得速度结构函数通过Favre平均获得更为合适.与热完全气体模型的结果相比,化学反应完全气体和量热完全气体模型的结果吻合更好.   相似文献   

4.
It is fairly well-known that nonstationary spacetimes exist which are filled with a nonrotating and nonexpanding perfect fluid, provided the fluid does not admit an equation of state. It is less well-known that the same is true when an equation of statedoes exist. Even whenall possible invariants of a perfect fluid solution depend on a single spatial coordinate only, the corresponding solutions need not be stationary.  相似文献   

5.
The gravitational collapse of spherical, barotropic perfect fluids is analyzed here. For the first time, the final state of these systems is studied without resorting to simplifying assumptions - such as self-similarity - using a new approach based on non-linear o.d.e. techniques, and formation of naked singularities is shown to occur for solutions such that the mass function is analytic in a neighborhood of the spacetime singularity.  相似文献   

6.
Some LRS Bianchi type I perfect fluid solutions are generated from known solutions of this type. The solutions represent spatially homogeneous and anisotropic cosmological models which would give essentially empty space for large time. The physical and kinematic properties of the models are discussed.  相似文献   

7.
In this paper, we solve Einsteins’ field equations for a circularly symmetric anisotropic fluid, with kinematic self-similarity of the first kind, in (2 + 1)-dimensional spacetimes. Considering the case where the radial pressure vanishes, we show that there exists a solution that represents the gravitational collapse of an anisotropic fluid, and the collapse will finally form a black hole, even if the fluid is constituted by phantom energy.  相似文献   

8.
All exact solutions of the Einstein-Maxwell equations of Bianchi type-I which are of physical importance have been found. The solutions represent non-locally rotationally symmetric universes with source-free electromagnetic fields and the matter content is a perfect fluid, with equation of state p=(γ?1)?(1?γ?2). Non-titled Bianchi type-II models are integrated for perfect fluid matter for all values of γ.  相似文献   

9.
This paper is a study of the effects of anisotropic matter sources on the qualitative evolution of spatially homogenous cosmologies of Bianchi type VIII. The analysis is based on a dynamical system approach and makes use of an anisotropic matter family developed by Calogero and Heinzle which generalises perfect fluids and provides a measure of deviation from isotropy. Thereby the role of perfect fluid solutions is put into a broader context. The results of this paper concern the past and future asymptotic dynamics of locally rotationally symmetric solutions of type VIII with anisotropic matter. It is shown that solutions whose matter source is sufficiently close to being isotropic exhibit the same qualitative dynamics as perfect fluid solutions. However a high degree of anisotropy of the matter model can cause dynamics to differ significantly from the vacuum and perfect fluid case.  相似文献   

10.
Gamal G.L.Nashed 《中国物理 B》2012,21(6):60401-060401
A perfect fluid with self-similarity of the second kind is studied within the framework of the teleparallel equivalent of general relativity(TEGR).A spacetime which is not asymptotically flat is derived.The energy conditions of this spacetime are studied.It is shown that after some time the strong energy condition is not enough to satisfy showing a transition from standard matter to dark energy.The singularities of this solution are discussed.  相似文献   

11.
We study the evolution of an inhomogeneous fluid with self-similarity of the second kind and anisotropic pressure. We found a class of solution to the Einstein field equations by assuming an equation of state where the radial pressure of the fluid is proportional to its energy density () and that the fluid moves along time-like geodesics. The equation of state combined with the self-similarity of second kind implies ω = −1. The energy conditions, geometrical and physical properties of the solutions are studied. We have found that, for the self-similar parameter , the solution represents an accelerated cosmological model ending in a Big Rip stage.  相似文献   

12.
The nonstatic analogues of the Kohler-Chao perfect fluid solution have been derived starting with a spherically symmetric flatV 5. It is also established that all the Petrov type D perfect fluid solutions of imbedding class one do not possess a pressure-free surface at a finite radius and therefore cannot be fitted to the external Schwarzschild's model.  相似文献   

13.
It is shown that Friedmann–Robertson–Walker (FRW) cosmological models coupled to a single scalar field and to a perfect fluid fitting a wide class of matter perfect fluid state equations, determined in (3+1) dimensional gravity can be related to their (2+1) cosmological counterparts, and vice-versa, by using simple algebraic rules relating gravitational constants, state parameters, perfect fluid and scalar field characteristics. It should be pointed out that the demonstration of these relations for the scalar fields and potentials does not require the fulfilment of any state equation for the scalar field energy density and pressure. As far as to the perfect fluid is concerned, one has to demand the fulfilment of state equations of the form p+ = f(). If the considered cosmologies contain the inflation field alone, then any (3+1) scalar field cosmology possesses a (2+1) counterpart, and vice-versa. Various families of solutions are derived, and we exhibited their correspondence; for instance, solutions for pure matter perfect fluids and single scalar field fulfilling linear state equations, solutions for scalar fields coupled to matter perfect fluids, a general class of solutions for scalar fields subjected to a state equation of the form p + = are reported, in particular Barrow–Saich, and Barrow–Burd–Lancaster–Madsen solutions are exhibited explicitly, and finally perfect fluid solutions for polytropic state equations are given.  相似文献   

14.
Some general solutions of the (general)D-dimensional vacuum Einstein field equations are obtained. The four-dimensional properties of matter are studied by investigating whether the higher-dimensional vacuum field equations reduce (formally) to Einstein's four-dimensional theory with matter. It is found that the solutions obtained give rise to an induced four-dimensional cosmological perfect fluid with a (physically reasonable) linear equation of state.  相似文献   

15.
We describe the spherically symmetric steady-state accretion of perfect fluid in the Reissner-Nordström metric. We present analytic solutions for accretion of a fluid with linear equations of state and of the Chaplygin gas. We also show that under reasonable physical conditions, there is no steady-state accretion of a perfect fluid onto a Reissner-Nordström naked singularity. Instead, a static atmosphere of fluid is formed. We discuss a possibility of violation of the third law of black hole thermodynamics for a phantom fluid accretion.  相似文献   

16.
An algorithm is presented for generating new exact solutions of the Einstein equations for spatially homogeneous cosmological models of Bianchi type VI0. The energy-momentum tensor is of perfect fluid type. Starting from Dunn and Tupper's dust-filled universe, new classes of solutions are obtained. The solutions represent anisotropic universes filled with perfect fluid not satisfying the equation of state. Some of their physical properties are studied.  相似文献   

17.
The kinematics and dynamics of self-similar cosmological models are discussed. The degrees of freedom of the solutions of Einstein's equations for different types of models are listed. The relation between kinematic quantities and the classifications of the self-similarity group is examined. All dust local rotational symmetry models have been found.  相似文献   

18.
We have considered some cosmological solutions with variable gravitational and cosmological constants with bulk viscosity. It is found that the solutions are singularity free and the deceleration parameter is in general not a constant unless we assume perfect fluid with equation of state in the standard cosmologies. Moreover, the deceleration parameter is a function of the scale factor and changes sign with evolution, so our solution is a generalization of those obtained by Arbab I. Arbab. The introduction of viscosity not only free from singularity but also give the deceleration parameter a freedom to vary with scale factor. Thus, a viscous cosmological fluid gives a more general situation in the early universe.  相似文献   

19.
The problem of finding spherically symmetric self-similar solutions of Einstein's field equations with a barotropic perfect fluid, which can be joined through a shock wave to some cosmological models, is considered. It is found that such solutions comprise an expanding shell of matter surrounding a horizon with an interior singularity.  相似文献   

20.
More general solutions than those presented by Bertolami are deduced in the Brans-Dicke cosmology, endowed with a time-dependent cosmological term, for a Robertson-Walker metric and a perfect fluid obeying the perfect gas law of state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号