首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
介绍了用于测试大电流Nb3Sn管内电缆导体接头电阻的超导变压器系统。该超导变压器包括初级线圈和次级线圈,其中初级线圈采用Nb Ti超导股线绕制;次级线圈采用Nb3Sn CICC导体绕制。初级线圈和次级线圈均浸泡在液氦中冷却。利用超导变压器对Nb3Sn CICC导体超导接头的测试结果表明,所设计的超导接头电阻满足设计要求。  相似文献   

2.
我们测量了不同镀Cu厚度的气相沉积Nb,Sn带的垂直场磁化曲线,由这些曲线,我们发现当镀Cu厚度从30μm增加到60μm时,初始磁通跳跃场从10kG增加到14 kG.作为比较,我们也测量了几条扩散Nb,Sn带的垂直场磁化曲线.  相似文献   

3.
高温超导体的磁化与磁滞损耗   总被引:1,自引:0,他引:1       下载免费PDF全文
胡立发  周廉  张平祥  王金星 《物理学报》2001,50(7):1359-1365
利用三种临界态模型(Bean模型、Kim模型和指数模型),采用比较简单的方法,以Bi2223高温超导体为例,给出了平板状超导体的初始磁化曲线和磁滞回线的解析表达式.对不同温度和磁场下的磁化强度进行了编程计算,对计算结果进行讨论.利用推导的公式,讨论了温度和外加磁场对高温超导体的磁滞损耗的影响. 关键词: 磁滞损耗 磁通钉扎 高温超导体 临界态模型  相似文献   

4.
由于应变对Nb3Sn CICC(Cable-in-Conduit Conductor)交流损耗和稳定性有重要影响,中文基于Godeke-Ilyin定标法则首先求得Nb3Sn导体的临界电流密度,以此为基础计算分析了交流损耗,并讨论了电磁循环对交流损耗的影响;此外基于Godeke-Ilyin定标法则与分流温度的试验结果,拟合出分流温度与轴向应变的关系式,这为分析应变对Nb3Sn CICC分流温度的影响提供了一种思路。  相似文献   

5.
针对高温超导线圈的基本结构单元环形螺旋导体,通过仿真计算分析其磁化损耗特性。首先通过实验和仿真验证了三维T-A法的可靠性,研究了不同的环中心圆半径、不同的圆管半径下磁化损耗特性。研究结果表明,随着环中心圆半径的增大,环形螺旋导体的磁化损耗逐渐增加;随着圆管半径的增大,环形螺旋导体的磁化损耗逐渐减小。  相似文献   

6.
采用青铜工艺制备了具有不同青铜基体配置的两种多芯Nb_3Sn复合线,一种复合线具有均匀的青铜配置;另一种是不均匀的,并且,和国内外大多数复合线一样,在其外部有一个厚的青铜壳。研究结果表明,复合线中的青铜配置对芯丝的均匀反应、Nb_3Sn晶粒形貌以及青铜基体中的锡源变化具有明显的影响。所有这些使得两种导体的临界电流密度出现明显的差别。对于青铜基体均匀配置的导体,J_(c芯)(Nb_3Sn + Nb)比非均匀配置的导体高20—50%,  相似文献   

7.
铌三锡是高磁场下实用的一种低温超导材料,分流温度是超导磁体的关键设计参数。文中采用超导体幂指数模型,定量计算了绝热条件下柱状铌三锡复合导体的分流温度,计算结果与现有的分流温度估算公式结果相符;另外还分别讨论了幂指数模型的中的指数n以及磁场对铌三锡复合导体分流温度的影响。结果可以为无液氦直接冷却系统中超导磁体的相关低温技术研究提供一定的数据参考。  相似文献   

8.
本文叙述对Nb_3Sn扩散薄膜的一项包括高场临界电流机制,合金元素作用机制等内容在内的综合性实验研究。  相似文献   

9.
本文报导了关于筒形Nb_3Sn磁体的研究结果。观察到磁通跳跃现象。“冻结”场的分布和历史及激发场的分布紧密相关。“冻结”场可以不是中心对称的,这进一步证明了烧结的Nb_3Sn材料是非均匀介质。 我们描述了新的磁体结构,避免了磁通跳跃。除利用铁心来捕获磁通外,在激发和测量磁场的方法上均具有一定的特点。 利用圆筒状Nb_3Sn作为压挤磁通的活塞,在1.5°K时,曾获得的最高场强是28.5KG。  相似文献   

10.
我们曾对国产Nb-Ti磁体的退化和在快速励磁条件下的稳定性及其失超动力学,进行了实验研究。这里将在上述工作中证明是克服Nb-Ti磁体机械退化行之有效的措施,应用于国产汽相沉积Nb_3Sn带绕制的磁体中,并把Nb_3Sn磁体与Nb-Ti磁体组装,研究Nb_3Sn磁体的横场(H_(?))、纵场(H_(?))动态稳定性和低场不稳定性。同时给出了室温拉伸对短样I_c的影响。  相似文献   

11.
国际热核聚变实验装置需要超导磁体提供强磁场来约束等离子体。超导体在外磁场变化等非稳态环境中会产生以磁滞损耗为主的交流损耗。因此在制作绕制PF磁体的导体前须测量所使用Nb Ti股线的磁滞损耗特性,确保其性能达到ITER组织要求,防止影响磁体运行的稳定性。选择使用综合物性测量系统平台(PPMS)中的振动样品磁强计(VSM),测量了Nb Ti股线样品在模拟运行环境中的磁滞回线,从磁滞回线积分得到了样品的磁滞损耗。测得样品的磁滞损耗数据离散程度较小,且全部小于要求的限值,样品均达到了ITER的要求,此Nb Ti股线可用于超导导体、磁体的制作。  相似文献   

12.
我们测量了Nb_3Sn从4.2K到273K的绝对热电势率,结果表明在18 K以上,Nb_3Sn的热电势率都是正的.在60K左右,观察到由于声子曳引引起的平坦的峰.第一次观察到在超导临界温度附近,热电势率也有一个明显的转变过程.  相似文献   

13.
前言 Nb_3Sn是A-15化合物中的一个重要超导材料,有较高的H_(c2)(230kG)、T_c(18K)和J_c(在100kG场强下为2.6×10~(5)A.cm~(-2)),继Nb_(3)Sn掺ZrO_(2)颗粒的方法改善了J_c)性能之后叫,J.S.Caslaw期望加入第三元素引起反应动力学的改变来阻止或加快Nb_3Sn的形成达到影响其结构与性能. 结果发现在含有ZrO_2粒的铌基带上加铜扩散形成Nb_3Sn时,反应速度加快。J_c性能也几乎提高一倍. 形成Nb_3Sn的反应速度与锡的扩散速度成正比,所以,反应速度加快实际上意味着锡在铌三锡中的扩散速度加快.金属与合金中的内吸附研究表明,少量具有内表面活性的元素在合金中能显著改变某种元素的扩散速度,即:如果对B元素(或合金)而言,A元素不是内表面活性的,而C元素是内表面活性的,当加入C元素时,便会大大加速(或  相似文献   

14.
采用掺 Ti 铌管法(NbTi)_3Sn 导体以及“不均匀电流密度绕组设计”,“先绕制后反应”和“环氧真空浸渍”等技术制造的 Nb_3Sn 磁体适合用作 NbTi-Nb_3Sn 混合超导磁体装置的 Nb_3Sn芯磁体,其高场性能优异,体积小、重量轻、容许励磁速度快,承受失超能力强,所研制的净孔为28.5mm(重2.5kg)、30.3mm(重3.0kg)和41mm(重3.95kg)的 Nb_3Sn 磁体分别成功地用于工作中心磁场 14T,12T 和11T 的NbTi-Nb_3Sn 混合超导磁体装置.  相似文献   

15.
本微型电缆是一种柔性予反应导体。为保证其机械性能,采用了低温短时的热处理制度(650~700℃/10—15h)。但却获得了高的高场性能。这是由于微型电缆中钼丝的热收缩与Nb_3Sn热收缩正确地匹配,它几乎完全抵销了Nb_3Sn原来承受的压缩应变,从而使微型电缆获得高的高场性能。  相似文献   

16.
本文研究了Nb/固态Cu-Sn和Nb/液态Cu-Sn界面上Nb_3Sn晶粒的生长。实验表明:固态-固态界面上生长的晶粒尺寸虽小(约0.1μm),但Nb_3Sn晶粒的长大仍符合通常的固态晶粒长大规律;固态-液态界面上生长的Nb_3Sn分成两层,靠近Nb的内层晶粒细小,排列致密,外层晶粒粗大,分布零散,后者是前者经过溶解/沉积过程引起的,晶体形貌大多数呈菱形十二面体,部分呈正交平行六面体,说明Nb_3Sn的{110},{100}面的界面能低。  相似文献   

17.
本文报导了一种新型实用Nb~3Sn超导材料。它是含有6根多芯Nb_3Sn复合线(φ0.14mm)和1根中心增强钼丝(φ0.16mm)的7股单层微型电缆(φ0.45mm)。其最佳性能如下:T_c=17.7K;H_(c2)=24.9T(4.2K);16T下的J_c( 青铜+Nb_3Sn+Nb)=260A/mm~2(4.2K);许用弯曲直径为20mm,室温下许用拉伸应力高达392MPa,且能多次复绕,其超导性能不退降。其内径为40mm的试验磁体与12.8T背场组合,中心磁场达到14.52T。它是制作小型高场超导磁体的优良材料。  相似文献   

18.
本文介绍了用BASIC程序计算螺线管超导磁体的磁场和磁场均匀度。根据磁场均匀度的不同要求,给出复合磁体系统中内磁体的几何尺寸及所需线材。实例给出的是采用多芯Nb_3Sn复合导体制作螺线管磁体的工艺及某些测量结果,对于Nb_3Sn磁体的制作具有普遍适用性。  相似文献   

19.
Nb_3Sn层中的晶界是影响临界电流的重要微结构因素.对扩散Nb_3Sn薄膜的TEM研究表明有尺度分别在10~3A与10~2A的两种大小不同的晶粒.很大面积的叠栅条纹证明有与扩散方向大体上正交的大量晶界.其中,取向差20°的大角度扭转晶界给出间距小到15A的极细密叠栅条纹.初步讨论了这种晶界形成的可能原因.  相似文献   

20.
设计了一种基于Bi-2223带材的高温超导复合导体,利用有限元方法,分析了该复合导体在励磁过程和交变磁场下的交流损耗。分析结果表明,损耗随传输电流和外磁场增加而增大。为进一步分析导体稳定性提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号