首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
Let R I (m, n) be the classical domain of type I in ? m×n with 1 ≤ mn. We obtain the optimal estimates of the eigenvalues of the Fréchet derivative Df(\(\mathop Z\limits^ \circ \)) at a smooth boundary fixed point \(\mathop Z\limits^ \circ \)of R I (m, n) for a holomorphic self-mapping f of R I (m, n). We provide a necessary and sufficient condition such that the boundary points of R I (m, n) are smooth, and give some properties of the smooth boundary points of R I (m, n). Our results extend the classical Schwarz lemma at the boundary of the unit disk Δ to R I (m, n), which may be applied to get some optimal estimates in several complex variables.  相似文献   

2.
Given a homological ring epimorphism from a ring R to another ring S, we show that if the left R-module S has a finite-type resolution, then the algebraic K-group K n (R) of R splits as the direct sum of the algebraic K-group K n (S) of S and the algebraic K-group K n (R) of a Waldhausen category R determined by the ring epimorphism. This result is then applied to endomorphism rings, matrix subrings, rings with idempotent ideals, and universal localizations which appear often in representation theory and algebraic topology.  相似文献   

3.
An (a, d)-edge-antimagic total labeling of a graph G is a bijection f from V(G) ∪ E(G) onto {1, 2,…,|V(G)| + |E(G)|} with the property that the edge-weight set {f(x) + f(xy) + f(y) | xyE(G)} is equal to {a, a + d, a + 2d,...,a + (|E(G)| ? 1)d} for two integers a > 0 and d ? 0. An (a, d)-edge-antimagic total labeling is called super if the smallest possible labels appear on the vertices. In this paper, we completely settle the problem of the super (a, d)-edge-antimagic total labeling of the complete bipartite graph Km,n and obtain the following results: the graph Km,n has a super (a, d)-edge-antimagic total labeling if and only if either (i) m = 1, n = 1, and d ? 0, or (ii) m = 1, n ? 2 (or n = 1 and m ? 2), and d ∈ {0, 1, 2}, or (iii) m = 1, n = 2 (or n = 1 and m = 2), and d = 3, or (iv) m, n ? 2, and d = 1.  相似文献   

4.
For integers m > r ≥ 0, Brietzke (2008) defined the (m, r)-central coefficients of an infinite lower triangular matrix G = (d, h) = (dn,k)n,k∈N as dmn+r,(m?1)n+r, with n = 0, 1, 2,..., and the (m, r)-central coefficient triangle of G as
$${G^{\left( {m,r} \right)}} = {\left( {{d_{mn + r,\left( {m - 1} \right)n + k + r}}} \right)_{n,k \in \mathbb{N}}}.$$
It is known that the (m, r)-central coefficient triangles of any Riordan array are also Riordan arrays. In this paper, for a Riordan array G = (d, h) with h(0) = 0 and d(0), h′(0) ≠ 0, we obtain the generating function of its (m, r)-central coefficients and give an explicit representation for the (m, r)-central Riordan array G(m,r) in terms of the Riordan array G. Meanwhile, the algebraic structures of the (m, r)-central Riordan arrays are also investigated, such as their decompositions, their inverses, and their recessive expressions in terms of m and r. As applications, we determine the (m, r)-central Riordan arrays of the Pascal matrix and other Riordan arrays, from which numerous identities are constructed by a uniform approach.
  相似文献   

5.
Let (M n , g)(n ≥ 3) be an n-dimensional complete Riemannian manifold with harmonic curvature and positive Yamabe constant. Denote by R and R m? the scalar curvature and the trace-free Riemannian curvature tensor of M, respectively. The main result of this paper states that R m? goes to zero uniformly at infinity if for \(p\geq \frac n2\), the L p -norm of R m? is finite. Moreover, If R is positive, then (M n , g) is compact. As applications, we prove that (M n , g) is isometric to a spherical space form if for \(p\geq \frac n2\), R is positive and the L p -norm of R m? is pinched in [0, C 1), where C 1 is an explicit positive constant depending only on n, p, R and the Yamabe constant. We give an isolation theorem of the trace-free Ricci curvature tensor of compact locally conformally flat Riemannian n-manifolds with constant positive scalar curvature, which extends Theorem 1 of Hebey and M. Vaugon (J. Geom. Anal. 6, 531–553, 1996). This result is sharp, and we can precisely characterize the case of equality. In particular, when n = 4, we recover results by Gursky (Indiana Univ. Math. J. 43, 747–774, 1994; Ann. Math. 148, 315–337, 1998).  相似文献   

6.
Let (F k,n ) n and (L k,n )n be the k-Fibonacci and k-Lucas sequence, respectively, which satisfies the same recursive relation a n+1 = ka n + a n?1 with initial values F k,0 = 0, F k,1 = 1, L k,0 = 2 and L k,1 = k. In this paper, we characterize the p-adic orders ν p (F k,n ) and ν p (L k,n ) for all primes p and all positive integers k.  相似文献   

7.
Let ? be a trace on the unital C*-algebra A and M ? be the ideal of the definition of the trace ?. We obtain a C*analogue of the quantum Hall effect: if P,QA are idempotents and P ? QM ? , then ?((P ? Q)2n+1) = ?(P ? Q) ∈ R for all nN. Let the isometries UA and A = A*∈ A be such that I+A is invertible and U-AM ? with ?(U-A) ∈ R. Then I-A, I?UM ? and ?(I?U) ∈ R. Let nN, dimH = 2n + 1, the symmetry operators U, VB(H), and W = U ? V. Then the operator W is not a symmetry, and if V = V*, then the operator W is nonunitary.  相似文献   

8.
For X, YMn,m it is said that X is gut-majorized by Y, and we write X ?gutY, if there exists an n-by-n upper triangular g-row stochastic matrix R such that X = RY. Define the relation ~gut as follows. X ~gutY if X is gut-majorized by Y and Y is gut-majorized by X. The (strong) linear preservers of ?gut on ?n and strong linear preservers of this relation on Mn,m have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of ~gut on ?n and Mn,m.  相似文献   

9.
Let R and S be associative rings and S V R a semidualizing (S-R)-bimodule. An R-module N is said to be V-Gorenstein injective if there exists a Hom R (I V (R),?) and Hom R (?,I V (R)) exact exact complex \( \cdots \to {I_1}\xrightarrow{{{d_0}}}{I_0} \to {I^0}\xrightarrow{{{d_0}}}{I^1} \to \cdots \) of V-injective modules I i and I i , i ∈ N0, such that N ? Im(I 0I 0). We will call N to be strongly V-Gorenstein injective in case that all modules and homomorphisms in the above exact complex are equal, respectively. It is proved that the class of V-Gorenstein injective modules are closed under extension, direct summand and is a subset of the Auslander class A V (R) which leads to the fact that V-Gorenstein injective modules admit exact right I V (R)-resolution. By using these facts, and thinking of the fact that the class of strongly V-Gorenstein injective modules is not closed under direct summand, it is proved that an R-module N is strongly V-Gorenstein injective if and only if NE is strongly V-Gorenstein injective for some V-injective module E. Finally, it is proved that an R-module N of finite V-Gorenstein injective injective dimension admits V-Gorenstein injective preenvelope which leads to the fact that, for a natural integer n, Gorenstein V-injective injective dimension of N is bounded to n if and only if \(Ext_{{I_V}\left( R \right)}^{ \geqslant n + 1}\left( {I,N} \right) = 0\) for all modules I with finite I V (R)-injective dimension.  相似文献   

10.
Granted the three integers n ≥ 2, r, and R, consider all ordered tuples of r elements of length at most R in the free group F n . Calculate the number of those tuples that generate in F n a rank r subgroup and divide it by the number of all tuples under study. As R → ∞, the limit of the ratio is known to exist and equal 1 (see [1]). We give a simple proof of this result.  相似文献   

11.
Given an indexing set I and a finite field Kα for each α ∈ I, let ? = {L2(Kα) | α ∈ I} and \(\mathfrak{N} = \{ SL_2 (K_\alpha )|\alpha \in I\}\). We prove that each periodic group G saturated with groups in \(\Re (\mathfrak{N})\) is isomorphic to L2(P) (respectively SL2(P)) for a suitable locally finite field P.  相似文献   

12.
A semigroup (R, ·) is said to be a UA-ring if there exists a unique binary operation “+” transforming (R, ·, +) into a ring. An R-module A is said to be a UA-module if it is not possible to define a new addition in A without changing the action of R on A. In this paper we investigate topics that are related to the structure of UA-rings of endomorphisms and UA-modules over commutative Noetherian rings.  相似文献   

13.
14.
Let IK be an algebraically closed field of characteristic 0 complete for an ultrametric absolute value. Following results obtained in complex analysis, here we examine problems of uniqueness for meromorphic functions having finitely many poles, sharing points or a pair of sets (C.M. or I.M.) defined either in the whole field IK or in an open disk, or in the complement of an open disk. Following previous works in C, we consider functions fn(x)fm(ax + b), gn(x)gm(ax + b) with |a| = 1 and nm, sharing a rational function and we show that f/g is a n + m-th root of 1 whenever n + m ≥ 5. Next, given a small function w, if n, m ∈ IN are such that |n ? m| ≥ 5, then fn(x)fm(ax + b) ? w has infinitely many zeros. Finally, we examine branched values for meromorphic functions fn(x)fm(ax + b).  相似文献   

15.
We present conditions that allow us to prove the existence of eigenvalues and characteristic values for operator F(D) ? C(λ): L 2(R m ) → L 2(R m ), where F(D) is a pseudo-differential operator with a symbol F() and C(λ): L 2(R m ) → L 2(R m ) is a linear continuous operator.  相似文献   

16.
The main result of this paper is a bi-parameter Tb theorem for Littlewood–Paley g-function, where b is a tensor product of two pseudo-accretive function. Instead of the doubling measure, we work with a product measure μ = μn × μm, where the measures μn and μm are only assumed to be upper doubling. The main techniques of the proof include a bi-parameter b-adapted Haar function decomposition and an averaging identity over good double Whitney regions. Moreover, the non-homogeneous analysis and probabilistic methods are used again.  相似文献   

17.
Let g be the finite dimensional simple Lie algebra of type An, and let U? = U q (g,Λ) and U = U q (g,Q) be the quantum groups defined over the weight lattice and over the root lattice, respectively. In this paper, we find two algebraically independent central elements in U? for all n ≥ 2 and give an explicit formula of the Casimir elements for the quantum group U? = U q (g,Λ), which corresponds to the Casimir element of the enveloping algebra U(g). Moreover, for n = 2 we give explicitly generators of the center subalgebras of the quantum groups U? = U q (g,Λ) and U = U q (g,Q).  相似文献   

18.
In this paper, we connect rectangular free probability theory and spherical integrals. We prove the analogue, for rectangular or square non-Hermitian matrices, of a result that Guionnet and Maïda proved for Hermitian matrices in (J. Funct. Anal. 222(2):435–490, 2005). More specifically, we study the limit, as n and m tend to infinity, of \(\frac{1}{n}\log\mathbb{E}\{\exp[\sqrt{nm}\theta X_{n}]\}\), where θ∈?, X n is the real part of an entry of U n M n V m and M n   is a certain n×m deterministic matrix and U n and V m are independent Haar-distributed orthogonal or unitary matrices with respective sizes n×n and m×m. We prove that when the singular law of M n converges to a probability measure μ, for θ small enough, this limit actually exists and can be expressed with the rectangular R-transform of μ. This gives an interpretation of this transform, which linearizes the rectangular free convolution, as the limit of a sequence of log-Laplace transforms.  相似文献   

19.
Let \(n \ge 2\) be a fixed integer, R be a noncommutative n!-torsion free ring and I be any non zero ideal of R. In this paper we have proved the following results; (i) If R is a prime ring and there exists a symmetric skew n-derivation \(D: R^n \rightarrow R\) associated with the automorphism \(\sigma \) on R,  such that the trace function \(\delta : R \rightarrow R \) of D satisfies \([\delta (x), \sigma (x)] =0\), for all \(x\in I,\) then \(D=0;\,\)(ii) If R is a semi prime ring and the trace function \(\delta ,\) commuting on I,  satisfies \([\delta (x), \sigma (x)]\in Z\), for all \(x \in I,\) then \([\delta (x), \sigma (x)] = 0 \), for all \(x \in I.\) Moreover, we have proved some annihilating conditions for algebraic identity involving multiplicative(generalized) derivation.  相似文献   

20.
Let λK m,n be a complete bipartite multigraph with two partite sets having m and n vertices, respectively. A K p,q -factorization of λK m,n is a set of edge-disjoint K p,q -factors of λK m,n which partition the set of edges of λK m,n . When p = 1 and q is a prime number, Wang, in his paper [On K 1,q -factorization of complete bipartite graph, Discrete Math., 126: (1994), 359-364], investigated the K 1,q -factorization of K m,n and gave a sufficient condition for such a factorization to exist. In papers [K 1,k -factorization of complete bipartite graphs, Discrete Math., 259: 301-306 (2002),; K p,q -factorization of complete bipartite graphs, Sci. China Ser. A-Math., 47: (2004), 473-479], Du and Wang extended Wang’s result to the case that p and q are any positive integers. In this paper, we give a sufficient condition for λK m,n to have a K p,q -factorization. As a special case, it is shown that the necessary condition for the K p,q -factorization of λK m,n is always sufficient when p : q = k : (k + 1) for any positive integer k.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号