首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A criterion of convergence for stationary nonuniform subdivision schemes is provided. For periodic subdivision schemes, this criterion is optimal and can be applied to Hermite subdivision schemes which are not necessarily interpolatory. For the Merrien family of Hermite subdivision schemes which involve two parameters, we are able to describe explicitly the values of the parameters for which the Hermite subdivision scheme is convergent.  相似文献   

2.
We propose a new adaption of linear Hermite subdivision schemes to the manifold setting. Our construction is intrinsic, as it is based solely on geodesics and on the parallel transport operator of the manifold. The resulting nonlinear Hermite subdivision schemes are analyzed with respect to convergence and C 1 smoothness. Similar to previous work on manifold-valued subdivision, this analysis is carried out by proving that a so-called proximity condition is fulfilled. This condition allows to conclude convergence and smoothness properties of the manifold-valued scheme from its linear counterpart, provided that the input data are dense enough. Therefore the main part of this paper is concerned with showing that our nonlinear Hermite scheme is “close enough”, i.e., in proximity, to the linear scheme it is derived from.  相似文献   

3.
We propose a general study of the convergence of a Hermite subdivision scheme ℋ of degree d>0 in dimension 1. This is done by linking Hermite subdivision schemes and Taylor polynomials and by associating a so-called Taylor subdivision (vector) scheme . The main point of investigation is a spectral condition. If the subdivision scheme of the finite differences of is contractive, then is C 0 and ℋ is C d . We apply this result to two families of Hermite subdivision schemes. The first one is interpolatory; the second one is a kind of corner cutting. Both of them use the Tchakalov-Obreshkov interpolation polynomial.   相似文献   

4.
Bivariate interpolatory Hermite subdivision schemes have recently been applied to build free-form subdivision surfaces. It is well known to geometric modelling practitioners that interpolatory schemes typically lead to ``unfair" surfaces--surfaces with unwanted wiggles or undulations--and noninterpolatory (a.k.a. approximating in the CAGD community) schemes are much preferred in geometric modelling applications. In this article, we introduce, analyze and construct noninterpolatory Hermite subdivision schemes, a class of vector subdivision schemes which can be applied to iteratively refine Hermite data in a not necessarily interpolatory fashion. We also study symmetry properties of such subdivision schemes which are crucial for application in free-form subdivision surfaces.

A key step in our mathematical analysis of Hermite type subdivision schemes is that we make use of the strong convergence theory of refinement equations to convert a prescribed geometric condition on the subdivision scheme--namely, the subdivision scheme is of Hermite type--to an algebraic condition on the subdivision mask. The latter algebraic condition can then be used in a computational framework to construct specific schemes.

  相似文献   


5.
We introduce a family of three-point subdivision schemes related to palindromic pairs of matrices of order 2. We apply the Mößner theorem on palindromic matrices to the C 0 convergence of these subdivision schemes. We study the Hölder regularity of their limit functions. The Hölder exponent which is found in the regular case is sharp for most limit functions. In the singular case, the modulus of continuity of the limit functions is of order δlogδ. These results can be used for studying the C 1 convergence of the Merrien family of Hermite subdivision schemes.  相似文献   

6.
Vector and Hermite subdivision schemes both act on vector data, but since the latter one interprets the vectors as function values and consecutive derivatives they differ by the “renormalization” of the Hermite scheme in any step. In this paper we give an algebraic factorization method in one and several variables to relate any Hermite subdivision scheme that satisfies the so–called spectral condition to a vector subdivision scheme. These factorizations are natural extensions of the “zero at π” condition known for the masks of refinable functions. Moreover, we show how this factorization can be used to investigate different forms of convergence of the Hermite scheme and why the multivariate situation is conceptionally more intricate than the univariate one. Finally, we give some examples of such factorizations.  相似文献   

7.
We study the smoothness of the limit function for one-dimensional unequally spaced interpolating subdivision schemes. The new grid points introduced at every level can lie in irregularly spaced locations between old, adjacent grid points and not only midway as is usually the case. For the natural generalization of the four-point scheme introduced by Dubuc and Dyn, Levin, and Gregory, we show that, under some geometric restrictions, the limit function is always C 1 ; under slightly stronger restrictions we show that the limit function is almost C 2 , the same regularity as in the regularly spaced case. May 27, 1997. Date revised: March 10, 1998. Date accepted: March 28, 1998.  相似文献   

8.
In 1999, Dubuc and Merrien introduced a Hermite subdivision scheme which gives C 1-interpolants on a rectangular mesh. In this paper a two parameter version of this scheme is analyzed, and C 1-convergence is proved for a range of the two parameters. By introducing a control grid the parameters in the scheme can be chosen so that the interpolant inherits positivity and/or directional monotonicity from the initial data. Several examples are given showing that a desired shape can be achieved even if only very crude estimates for the initial slopes are used. AMS subject classification (2000) 65D05, 65D17  相似文献   

9.
In a recent paper, we investigated factorization properties of Hermite subdivision schemes by means of the so-called Taylor factorization. This decomposition is based on a spectral condition which is satisfied for example by all interpolatory Hermite schemes. Nevertheless, there exist examples of Hermite schemes, especially some based on cardinal splines, which fail the spectral condition. For these schemes (and others) we provide the concept of a generalized Taylor factorization and show how it can be used to obtain convergence criteria for the Hermite scheme by means of factorization and contractivity.  相似文献   

10.
In a recent paper, we investigated factorization properties of Hermite subdivision schemes by means of the so-called Taylor factorization. This decomposition is based on a spectral condition which is satisfied for example by all interpolatory Hermite schemes. Nevertheless, there exist examples of Hermite schemes, especially some based on cardinal splines, which fail the spectral condition. For these schemes (and others) we provide the concept of a generalized Taylor factorization and show how it can be used to obtain convergence criteria for the Hermite scheme by means of factorization and contractivity.  相似文献   

11.
The present paper deals with subdivision schemes associated with irregular grids. We first give a sufficient condition concerning the difference scheme to obtain convergence. This condition generalizes a necessary and sufficient condition for convergence known in the case of uniform and stationary schemes associated with a regular grid. Through this sufficient condition, convergence of a given subdivision scheme can be proved by comparison with another scheme. Indeed, when two schemes are equivalent in some sense, and when one satisfies the sufficient condition for convergence, the other also satisfies it and it therefore converges too. We also study the smoothness of the limit functions produced by a scheme which satisfies the sufficient condition. Finally, the results are applied to the study of Lagrange interpolating subdivision schemes of any degree, with respect to particular irregular grids.  相似文献   

12.
The present article deals with convergence and smoothness analysis of geometric, nonlinear subdivision schemes in the presence of extraordinary points. We discuss when the existence of a proximity condition between a linear scheme and its nonlinear analogue implies convergence of the nonlinear scheme (for dense enough input data). Furthermore, we obtain C 1 smoothness of the nonlinear limit function in the vicinity of an extraordinary point over Reif’s characteristic parametrization. The results apply to the geometric analogues of well-known subdivision schemes such as Doo–Sabin or Catmull–Clark schemes.  相似文献   

13.
We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We also study a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easy-to-use construction method for multivariate refinable Hermite interpolants. Using this method, several new refinable Hermite interpolants with respect to different dilation matrices and symmetry groups are constructed and analyzed.

Some of the Hermite interpolants constructed here are related to well-known spline interpolation schemes developed in the computer-aided geometric design community (e.g., the Powell-Sabin scheme). We make some of these connections precise. A spline connection allows us to determine critical Hölder regularity in a trivial way (as opposed to the case of general refinable functions, whose critical Hölder regularity exponents are often difficult to compute).

While it is often mentioned in published articles that ``refinable functions are important for subdivision surfaces in CAGD applications", it is rather unclear whether an arbitrary refinable function vector can be meaningfully applied to build free-form subdivision surfaces. The bivariate symmetric refinable Hermite interpolants constructed in this article, along with algorithmic developments elsewhere, give an application of vector refinability to subdivision surfaces. We briefly discuss several potential advantages offered by such Hermite subdivision surfaces.

  相似文献   


14.
Smoothness of Stationary Subdivision on Irregular Meshes   总被引:2,自引:0,他引:2  
We derive necessary and sufficient conditions for tangent plane and C k -continuity of stationary subdivision schemes near extraordinary vertices. Our criteria generalize most previously known conditions. We introduce a new approach to analysis of subdivision surfaces based on the idea of the universal surface . Any subdivision surface can be locally represented as a projection of the universal surface, which is uniquely defined by the subdivision scheme. This approach provides us with a more intuitive geometric understanding of subdivision near extraordinary vertices. February 16, 1998. Date revised: January 27, 1999. Date accepted: April 2, 1999.  相似文献   

15.
In this paper,we propose a three point approximating subdivision scheme,with three shape parameters,that unifies three different existing three point approximating schemes.Some sufficient conditions for subdivision curve C0 to C3 continuity and convergence of the scheme for generating tensor product surfaces for certain ranges of parameters by using Laurent polynomial method are discussed.The systems of curve and surface design based on our scheme have been developed successfully in garment CAD especially for clothes modelling.  相似文献   

16.
Subdivision schemes play an important role in computer graphics and wavelet analysis. In this paper we are mainly concerned with convergence of subdivision schemes inL p spaces (1≤p≤∞). We characterize theL p -convergence of a subdivision scheme in terms of thep-norm joint spectral radius of two matrices associated with the corresponding mask. We also discuss various properties of the limit function of a subdivision scheme, such as stability, linear independence, and smoothness.  相似文献   

17.
We present a construction of a refinable compactly supported vector of functions which is biorthogonal to the vector of B-splines of a given degree with multiple knots at the integers with prescribed multiplicity. The construction is based on Hermite interpolatory subdivision schemes, and on the relation between B-splines and divided differences. The biorthogonal vector of functions is shown to be refinable, with a mask related to that of the Hermite scheme. For simplicity of presentation the special (scalar) case, corresponding to B-splines with simple knots, is treated separately.  相似文献   

18.
In this paper we discuss methods for investigating the convergence of multivariate vector subdivision schemes and the regularity of the associated limit functions. Specifically, we consider difference vector subdivision schemes whose restricted contractivity determines the convergence of the original scheme and describes the connection between the regularity of the limit functions of the difference subdivision scheme and the original subdivision scheme.  相似文献   

19.
In this paper we develop tools for the analysis of net subdivision schemes, schemes which recursively refine nets of bivariate continuous functions defined on grids of lines, and generate denser and denser nets. Sufficient conditions for the convergence of such a sequence of refined nets, and for the smoothness of the limit function, are derived in terms of proximity to a bivariate linear subdivision scheme refining points, under conditions controlling some aspects of the univariate functions of the generated nets. Approximation orders of net subdivision schemes, which are in proximity with positive schemes refining points are also derived. The paper concludes with the construction of a family of blending spline-type net subdivision schemes, and with their analysis by the tools presented in the paper. This family is a new example of net subdivision schemes generating C1 limits with approximation order 2.  相似文献   

20.
We determine shape-preserving regions and we describe a general setting to generate shape-preserving families for the 2-points Hermite subdivision scheme introduced by Merrien (Numer. Algorithms 2:187–200, [1992]). This general construction includes the shape-preserving families presented in Merrien and Sablonníere (Constr. Approx. 19:279–298, [2003]) and Pelosi and Sablonníere (C 1 GP Hermite Interpolants Generated by a Subdivision Scheme, Prépublication IRMAR 06–23, Rennes, [2006]). New special families are presented as particular examples. Nonstationary and nonuniform versions of such schemes, which produce smoother limits, are discussed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号