首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the elastic constants of graphite at elevated temperature were experimentally investigated by using the virtual fields method (VFM). A new method was presented for the characterization of mechanical properties at elevated temperature. The three-point bending tests were performed on graphite materials by an universal testing machine equipped with heating furnace. Based on the heterogeneous deformation fields measured by the digital image correlation (DIC) technique, the elastic constants were then extracted by using VFM. The measurement results of the elastic constants at 500°C were obtained. The effect on the experimental results was also analyzed. The successful results verify the feasibility of using the proposed method to measure the properties of graphite at high temperature, and the proposed method is believed to have a good potential for further applications.  相似文献   

2.
Microscale particle image velocimetry measurements of ensemble flow fields surrounding a steadily migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver III (J Fluid Mech 601:1–23, 2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.  相似文献   

3.
Recently, a “principle of virtual power” has been adopted to model the behavior of materials that involve multiple length scales. In these works, the “principle” is stated for arbitrary parts of a body and this arbitrariness is used, but not to its fullest extent, to draw conclusions concerning the structure of the theory that results. Here, a theorem and an example application are given to illustrate the restrictive nature of the requirement that it hold for arbitrary parts of a body and to draw attention to the full consequences that result from this requirement. Several key results that have been reported in the recent literature are incomplete, and this incompleteness has lead to superficial conclusions.  相似文献   

4.
The equilibrium equation for an elastic body subjected to surface forces asserts the linear dependence of the Laplacian and the gradient of the divergence of the vector field which gives the displacement at each point. James Clerk Maxwell (1831–1879) was the first to point out that the component functions of such a field are biharmonic, i.e., their Laplacians are harmonic functions. Using only algebraic tools familiar to advanced undergraduates we show that the usual complex variable representation of two-variable biharmonic functions falls naturally out of a power series construction based on matrix representations of . Under the assumption of linear stress and strain components, this construction is then used to describe the solutions to the planar equilibrium equation in terms of the geometry of the Moebius plane.  相似文献   

5.
The aim of this article is the analysis of fracture growth in media characterized by random distribution of micro-failure mechanisms per unit volume. The deformation behavior of the material was investigated in terms of a spherical unit cell model, containing an initially spherical cell of porous. The effective elastic bulk modulus as a function of micro-failures concentration was computed and using the Griffith critirium and certain boundary conditions the rate at which the void area varies was determined too. Along the analysis a special form of the strain energy function for compressible Blatz–Ko material was used. The applied traction on the unit cell of the material was determined as a function of the porosity of the material, as well as the strain field within the solid. At low values of the porosity, as the applied external traction was increased instabilities were observed in the void growth.  相似文献   

6.
Although the discharge flow of spherical materials has been extensively explored, the effect of particle shape on discharge is still poorly understood. The present work explores the two-dimensional discharge flow fields of noncircular particles using the soft-sphere-imbedded pseudo-hard particle model method. Rectangular particles having different aspect ratios (Ra = 1, 1.5, 2–5) and regular polygonal particles having different numbers of sides (Ns = 3–8, 10) are discharged through hopper beds having different orifice widths (Di = 40, 70.77, 99.13, 125.74, 151.13 mm). The discharge rates of differently shaped particles in different beds are consistent with Beverloo’s relation. Moreover, the flow fields are computed and evaluated to study the effects of Ra, Ns, and Di on particle discharge. The characteristics of particle–particle connections in the discharge process are evaluated according to the temporal evolution and spatial distribution of the contact points. Additionally, the effect of the initial packing on the discharge profile is investigated. The findings help clarify the discharge of noncircular particles.  相似文献   

7.
A complete solution has been obtained for periodic particulate nanocomposite with the unit cell containing a finite number of spherical particles with the Gurtin–Murdoch interfaces. For this purpose, the multipole expansion approach by Kushch et al. [Kushch, V.I., Mogilevskaya, S.G., Stolarski, H.K., Crouch, S.L., 2011. Elastic interaction of spherical nanoinhomogeneities with Gurtin–Murdoch type interfaces. J. Mech. Phys. Solids 59, 1702–1716] has been further developed and implemented in an efficient numerical algorithm. The method provides accurate evaluation of local fields and effective stiffness tensor with the interaction effects fully taken into account. The displacement vector within the matrix domain is found as a superposition of the vector periodic solutions of Lamé equation. By using local expansion of the total displacement and stress fields in terms of vector spherical harmonics associated with each particle, the interface conditions are fulfilled precisely. Analytical averaging of the local strain and stress fields in matrix domain yields an exact, closed form formula (in terms of expansion coefficients) for the effective elastic stiffness tensor of nanocomposite. Numerical results demonstrate that elastic stiffness and, especially, brittle strength of nanoheterogeneous materials can be substantially improved by an appropriate surface modification.  相似文献   

8.
9.
Gibbs–Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs–Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs–Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.  相似文献   

10.
In this work,we present a theoretical study on the stability of a two-dimensional plane Poiseuille flow of magnetic fluids in the presence of externally applied magnetic fields.The fluids are assumed to be incompressible,and their magnetization is coupled to the flow through a simple phenomenological equation.Dimensionless parameters are defined,and the equations are perturbed around the base state.The eigenvalues of the linearized system are computed using a finite difference scheme and studied with respect to the dimensionless parameters of the problem.We examine the cases of both the horizontal and vertical magnetic fields.The obtained results indicate that the flow is destabilized in the horizontally applied magnetic field,but stabilized in the vertically applied field.We characterize the stability of the flow by computing the stability diagrams in terms of the dimensionless parameters and determine the variation in the critical Reynolds number in terms of the magnetic parameters.Furthermore,we show that the superparamagnetic limit,in which the magnetization of the fluids decouples from hydrodynamics,recovers the same purely hydrodynamic critical Reynolds number,regardless of the applied field direction and of the values of the other dimensionless magnetic parameters.  相似文献   

11.
The propagation of an elastic wave(EW) in a piezoelectric semiconductor(PSC) subjected to static biasing fields is investigated. It is found that there exist two coupling waves between electric field and charge carriers. One is stimulated by the action of the polarized electric field in the EW-front on charge carriers(EFC), and the other is stimulated by the action of initial electric field in biasing fields on dynamic carriers(IEC). Obviously, the latter is a man-made and tunable wave-carrier i...  相似文献   

12.
There exists a substantial disagreement between computer simulation results and high-energy density laboratory experiments of the Rayleigh–Taylor instability [1]. Motivated by the observed discrepancies in morphology and growth rates, we attempt to bring simulations and experiments into better agreement by extending the classic purely hydrodynamic model to include self-generation of magnetic fields and anisotropic thermal conduction.We adopt the Braginskii formulation for transport in hot, dense plasma, implement and verify the additional physics modules, and conduct a computational study of a single-mode RTI in two dimensions with various combinations of the newly implemented modules. We analyze physics effects on the RTI mixing and flow morphology, the effects of mutual physics interactions, and the evolution of magnetic fields.We find that magnetic fields reach levels on the order of 11 MG (plasma β ≈ 9.1 × 10?2) in the absence of thermal conduction. These fields do not affect the growth of the mixed layer but substantially modify its internal structure on smaller scales. In particular, we observe denting of the RT spike tip and generation of additional higher order modes as a result of these fields. Contrary to interpretation presented in earlier work [2], the additional mode is not generated due to modified anisotropic heat transport effects but due to dynamical effect of self-generated magnetic fields. The overall flow morphology in self-magnetized, non-conducting models is qualitatively different from models with a pre-existing uniform field oriented perpendicular to the interface. This puts the usefulness of simple MHD models for interpreting the evolution of self-magnetizing HED systems with zero-field initial conditions into doubt.The main effects of thermal conduction are a reduction of the RT instability growth rate (by about 20% for conditions considered here) and inhibited mixing on small scales. In this case, the maximum self-generated magnetic fields are weaker (approximately 1.7 MG; plasma β ≈ 49). This is due to reduction of temperature and density gradients due to conduction. These self-generated magnetic fields are of very similar strength compared to magnetic fields observed recently in HED laboratory experiments [3].We find that thermal conduction plays the dominant role in the evolution of the model RTI system considered. It smears out small-scale structure and reduces the RTI growth rate. This may account for the relatively featureless RT spikes seen in experiments, but does not explain mass extensions observed in experiments.Resistivity, related heat source terms and the thermo-electric contribution to the heat flow were not included in the present work. We estimate their impact on RTI as modest and not affecting our main conclusions. These effects will be discussed in detail in the next paper in the series.  相似文献   

13.
Nonlinear Rayleigh wave fields generated by an angle beam wedge transducer are modeled in this study. The calculated area sound sources underneath the wedge are used to model the fundamental Rayleigh sound fields on the specimen surface, which are more accurate than the previously used line sources with uniform or Gaussian amplitude distributions. A general two-dimensional nonlinear Rayleigh wave equation without parabolic approximation is introduced and the solutions are obtained using the quasilinear theory. The second harmonic Rayleigh wave due to material nonlinearity is given in an integral expression with these fundamental Rayleigh waves radiated by the wedge transmitter acting as a forcing function. Multi-Gaussian beam (MGB) models are employed to simplify these integral solutions and to extract the diffraction and attenuation correction terms explicitly. The effect of nonlinearity of generating sources on the second harmonic Rayleigh wave fields is taken into consideration; simulation results show that it will affect the magnitude and diffraction correction of the second harmonic waves in the region close to the Rayleigh wave sound sources. This research provides a theoretical improvement to alleviate the experimental restriction on analyzing the effects of diffraction, attenuation and source nonlinearity when using angle beam wedge transducers as transmitters.  相似文献   

14.
Consider an infinite thermally conductive medium characterized by Fourier’s law, in which a subdomain, called an inclusion, is subjected to a prescribed uniform heat flux-free temperature gradient. The second-order tensor field relating the gradient of the resulting temperature field over the medium to the uniform heat flux-free temperature gradient is referred to as Eshelby’s tensor field for conduction. The present work aims at deriving the general properties of Eshelby’s tensor field for conduction. It is found that: (i) the trace of Eshelby’s tensor field is equal to the characteristic function of the inclusion, independently of the latter’s shape; (ii) the isotropic part of Eshelby’s tensor field over the inclusion of arbitrary shape is identical to Eshelby’s tensor field over a 2D circular or 3D spherical inclusion; (iii) when the medium is made of an isotropic material and when the inclusion has some specific rotational symmetries, the value of the Eshelby’s tensor field evaluated at the inclusion gravity center and the symmetric average of Eshelby’s tensor fields are both equal to Eshelby’s tensor field for a 2D circular or 3D spherical inclusion. These results are then extended, with the help of a linear transformation, to the general case where the medium consists of an anisotropic conductive material. The method elaborated and results obtained by the present work are directly transposable to the physically analogous transport phenomena of electric conduction, dielectrics, magnetism, diffusion and flow in porous media and to the mathematically identical phenomenon of anti-plane elasticity.  相似文献   

15.
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic–viscoplastic constitutive relation with various hardening–softening–hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip.On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening(or softening–hardening) has a particularly strong effect on the near crack tip stress and deformation fields.  相似文献   

16.
The paper develops and examines the complete solutions for the elastic field induced by the point load vector in a general functionally graded material(FGM)model with transverse isotropy. The FGMs are approximated with n-layered materials.Each of the n-layered materials is homogeneous and transversely isotropic. The complete solutions of the displacement and stress fields are explicitly expressed in the forms of fifteen classical Hankel transform integrals with ten kernel functions. The ten kern...  相似文献   

17.
In this paper, we emphasize two main effects involved in the CRONE car suspension technology (CRONE: French acronym for Commande Robuste d??Ordre Non Entier). In a first time, we present the influence of the inductive or inertial effect of the pipes that links the different cells of the hydropneumatic car suspension. These components are mainly resistive and capacitive devices. Then, we analyze the nonlinear relations that link the hydraulic power variables (the flow and the pressure) of the hydraulic resistors and the hydropneumatic accumulators and we study the effect of the nonlinear terms on the car suspension response. Our study is based on the gamma RC arrangement developed in Altet et al. (In: Analysis and design of hybrid systems??proceedings of ADHS03, pp. 63?C68. Elsevier, Amsterdam, 2003) and Serrier et al. (In: Proceedings of IDETC/CIE 2005: ASME 2005 international design engineering technical conferences and computers and information in engineering conference, Long Beach, CA, USA, 24?C28 September 2005). In a second time, we focus only on the gamma RLC arrangement, introduced in Abi Zeid Daou et al. (Int. J. Electron. 96(12):1207?C1223, 2009). We show whether the parasite effect due to the pipes or the nonlinear RC components affect the system??s response. The simulation results show that neither the inertial effect caused by these parasite pipes of one meter length nor the use of the nonlinear resistors or the accumulators modifies the response of the gamma RC arrangement.  相似文献   

18.
We investigate the relationship between the time decay of the solutions u of the Navier–Stokes system on a bounded open subset of and the time decay of the right-hand sides f. In suitable function spaces, we prove that u always inherits at least part of the decay of f, up to exponential, and that the decay properties of u depend only upon the amount and type (e.g., exponential, or power-like) of decay of f. This is done by first making clear what is meant by “type” and “amount” of decay and by next elaborating upon recent abstract results pointing to the fact that, in linear and nonlinear PDEs, the decay of the solutions is often intimately related to the Fredholmness of the differential operator. This work was done while the second author was visiting the Bernoulli Center, EPFL, Switzerland, whose support is gratefully acknowledged.  相似文献   

19.
We study the energy decay of the turbulent solutions to the Navier–Stokes equations in the whole three-dimensional space. We show as the main result that the solutions with the energy decreasing at the rate \({O(t^{-\alpha}), t \rightarrow \infty, \alpha \in [0, 5/2]}\) , are exactly characterized by their initial conditions belonging into the homogeneous Besov space \({\dot{B}^{-\alpha}_{2, \infty}}\) . Similarly, for a solution u and \({p \in [1, \infty]}\) the integral \({\int_{0}^{\infty} \|t^{\alpha/2} u(t)\|^p \frac{1}{t} dt}\) is finite if and only if the initial condition of u belongs to the homogeneous Besov space \({\dot{B}_{2, p}^{-\alpha}}\) . For the case \({\alpha \in (5/2, 9/2]}\) we present analogical results for some subclasses of turbulent solutions.  相似文献   

20.
We consider atoms with closed shells, i.e. the electron number N is 2, 8, 10,..., and weak electron-electron interaction. Then there exists a unique solution γ of the Dirac–Fock equations with the additional property that γ is the orthogonal projector onto the first N positive eigenvalues of the Dirac–Fock operator . Moreover, γ minimizes the energy of the relativistic electron-positron field in Hartree–Fock approximation, if the splitting of into electron and positron subspace is chosen self-consistently, i.e. the projection onto the electron-subspace is given by the positive spectral projection of. For fixed electron-nucleus coupling constant g:=α Z we give quantitative estimates on the maximal value of the fine structure constant α for which the existence can be guaranteed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号