首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Cadmium sulphide (CdS) and cadmium telluride (CdTe) thin films are deposited by electron beam evaporation. Atomic force microscopy (AFM) reveals that the root mean square (RMS) roughness values of the CdS films increase as substrate temperature increases. The optical band gap values of CdS films increase slightly with the increase in the substrate temperature, in a range of 2.42-2.48 eV. The result of Hall effect measurement suggests that the carrier concentration decreases as the substrate temperature increases, making the resistivity of the CdS films increase. CdTe films annealed at 300℃ show that their lowest transmittances are due to their largest packing densities. The electrical characteristics of CdS/CdTe thin film solar cells are investigated in dark conditions and under illumination. Typical rectifying and photovoltaic properties are obtained.  相似文献   

2.
The anomalous photovoltaic effect has been studied in CdTe films and the results related to surface photovoltage measurements on cleaved crystals. A new model, based on surface photovoltages in angled microcrystallites is presented and accounts for the observed effects.  相似文献   

3.
In an effort to explore the optoelectronic properties of nanostructured indium sulfide (In2S3) thin films for a wide range of applications, the In2S3 thin films were successfully deposited on the APTS layers (-NH2-terminated) modified ITO glass substrates using the chemical bath deposition technique. The surface morphology, structure and composition of the resultant In2S3 thin films were characterized by FESEM, XRD, and XPS, respectively. Also, the correlations between the optical properties, photocurrent response and the thickness of thin films were established. According to the different deposition mechanisms on the varying SAMs terminational groups, the positive and negative micropatterned In2S3 thin films were successfully fabricated on modified Si substrates surface combining with the ultraviolet lithography process. This offers an attractive opportunity to fabricate patterned In2S3 thin films for controlling the spatial positioning of functional materials in microsystems.  相似文献   

4.
Equilibrium electrophysical characteristics of epitaxial CdTe films grown by the thermal screen method and the quasiclosed volume method are investigated. It is established that the films in both cases are semiconductors with inhomogeneous potential relief of the band to whose formation the main contribution is from barriers on the boundaries of the growth patterns. It is shown that jump conductivity with a variable jump length due to inhomogeneity of the potential relief of the bands and the high states density at the Fermi level is observed in CdTe films synthesized by the quasiclosed volume method for relatively high temperatures.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 72–76, March, 1990.  相似文献   

5.
《Current Applied Physics》2003,3(2-3):195-197
Thin films of bismuth telluride grown by electrochemical deposition technique on conducting glass and Mo sheet substrates, were characterized for their structural, morphological, optical and compositional analysis. These studies revealed polycrystalline anisotropic and layered structure of these films with different compositional stoichiometry. In the present work electrochemical deposition of bismuth telluride thin films is studied as a dopant material in II–VI group absorber materials for photovoltaic application since it has a narrow optical energy band gap of 0.13 eV. In this deposition process different film growth parameters were optimized to get good quality of compositionally uniform bismuth telluride thin film. XRD analysis revealed a hexagonal symmetry with large c-axis lattice constants (Bi2Te3, Bi2+XTe3−X).  相似文献   

6.
Cadmium telluride thin films were deposited on conducting glass and titanium substrates by the pulse plating technique at different duty cycles in the range 10–50%. The films were characterised by X-ray diffraction and were found to possess single phase cubic structure. Optical studies indicated a direct band gap of 1.45 eV. Surface morphology of the films indicated that the crystallite size increases with increase of duty cycle. X-ray photoelectron spectroscopy studies confirmed the formation of CdTe. Electron-dispersive X-ray studies were made to estimate the composition. Cross-plane resistivity measurements indicated that the resistivity decreases with increase of duty cycle.  相似文献   

7.
《Applied Surface Science》1986,27(3):338-354
Single crystal p-CdTe and thin film p-CdTe, made by an air annealing of electrodeposited n-CdTe, were subjected to chemical etching by bromine in methanol (BM) and by potassium dichromate-sulphuric acid (KD). XPS and SIMS gave both qualitative and quantitative information on the effects. Etch rates were determined. For the concentrations examined, KD etched more rapidly than BM etched, and gave much deeper Cd depletion regions. In films which had been BM etched and washed, Br was present throughout the film. After KD etching, a very small amount of Cr was still present in films. The results indicate that the etchants travel along grain boundaries. Both etches left surfaces rich in Te0. In addition, BM produced CdBr2 and TeBr4, both removable by washing. Varying the concentration of BM did not increase the maximum depletion depth of 2 nm. Diluting KD reduced the Cd depletion region. Conditions to give a desired Cd depletion depth were established.  相似文献   

8.
The cadmium oxide (CdO) and F:CdO films have been deposited by spray pyrolysis method using cadmium acetate and ammonium fluoride as precursors for Cd and F ions, respectively. The effect of temperature and F doping on the structural, morphological, optical and Hall effect properties of sprayed CdO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical absorption and electrical measurement techniques. TGA and DTA studies, indicates the formation of CdO by decomposition of cadmium acetate after 250 °C. XRD patterns reveal that samples are polycrystalline with cubic structure and exhibits (2 0 0) preferential orientation. Considerable broading of (2 0 0) peak, simultaneous shifting of corresponding Bragg's angle have been observed with respect to F doping level. SEM and AFM show the heterogeneous distribution of cubical grains all over the substrate, which are randomly distributed. F doping shifts the optical gap along with the increase in the transparency of CdO films. The Hall effect measurement indicates that the resistivity and mobility decrease up to 4% F doping.  相似文献   

9.
Low-resistivity n-type ZnO thin films were grown by atomic layer deposition (ALD) using diethylzinc (DEZ) and H2O as Zn and O precursors. ZnO thin films were grown on c-plane sapphire (c- Al2O3) substrates at 300 C. For undoped ZnO thin films, it was found that the intensity of ZnO () reflection peak increased and the electron concentration increased from 6.8×1018 to 1.1×1020 cm−3 with the increase of DEZ flow rate, which indicates the increase of O vacancies () and/or Zn interstitials (Zni). Ga-doping was performed under Zn-rich growth conditions using triethylgallium (TEG) as Ga precursor. The resistivity of 8.0×10−4 Ω cm was achieved at the TEG flow rate of 0.24 μmol/min.  相似文献   

10.
Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 °C, while post-deposition annealing at 400 °C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.  相似文献   

11.
Transparent conducting oxide thin film CdTe-doped indium oxide (In2O3) has been grown by pulsed-laser deposition from a target of CdTe powder embedded in metallic indium. The electro-optical and structural properties were investigated as a function of oxygen partial pressure (PO2) and substrate temperature (Ts). A film deposited at Ts=420 °C and PO2=4 Pa shows the minimum resistivity 7.5×10−4 Ω cm, its optical transmission is 83% and the carrier concentration was 8.9×1020 cm3. The optical band gap and the average roughness of that sample were 3.6 eV and 6.45 Å, respectively. X-ray diffraction studies indicated that the films were polycrystalline. This material is a good candidate for being used as transparent conductor in the CdTe–CdS solar cell.  相似文献   

12.
In this work, we describe a simple spin-coating deposition technique for lead sulphide (PbS) and cadmium sulphide (CdS) films from a methanolic metal–thiourea complex. The characterization of the films by X-ray diffraction and X-ray photoelectron spectroscopy techniques revealed that pure cubic phase PbS and CdS layers were formed via this method. As shown by atomic force microscopy and scanning electron microscopy results, both films were homogeneous and presented a smooth surface. Optical properties showed that the energy band gap of PbS and CdS films were around 1.65 and 2.5 eV, respectively. The PbS film is p-type in nature with an electrical conductivity of around 0.8 S/cm. The hole concentration and mobility were 2.35 × 1018 cm?3 and 2.16 × 10?3 cm2/V/s, respectively, as determined from Hall measurement. Both films were used to develop a thin film solar cell device of graphite/PbS/CdS/ITO/glass. Device characterization showed the power conversion efficiency of around 0.24 %. The corresponding open circuit voltage, short circuit current and fill factor were 0.570 V, 1.32 mA/cm2 and 0.32, respectively.  相似文献   

13.
14.
Mixed tungsten-ruthenium oxide thin films were prepared for the first time by dc magnetron co-sputtering technique and were studied by cyclic voltammetry, optical transmission measurements, Raman spectroscopy and the W L3 and Ru K edges X-ray absorption spectroscopy (XAS) in comparison with pure WO3 films. The Ru concentration was varied in the range from 0 to 28 at.%. XAS results suggest that the average local structure around both tungsten and ruthenium ions remains unchanged within experimental accuracy in all samples, moreover, for tungsten ions, it resembles that of pure WO3 films. However, the presence of the ruthenium ions affects the electrochemical and optical properties of the films. Our results suggest that mixed films are formed by tungsten trioxide grains surrounded by ruthenium oxide phase. Paper presented at the 9th EuroConference on Ionics, Ixia, Rhodes, Greece, Sept. 15–21, 2002.  相似文献   

15.
Indium tin oxide (ITO) thin films (200-400 nm in thickness) have been grown by pulsed laser deposition (PLD) on glass substrates without a post-deposition anneal. The electrical and optical properties of these films have been investigated as a function of substrate temperature and oxygen partial pressure during deposition. Films were deposited at substrate temperatures ranging from room temperature to 300 °C in O2 partial pressures ranging from 0.1 to 100 mTorr. For 300 nm thick ITO films grown at room temperature in oxygen pressure of 10 mTorr, the electrical conductivity was 2.6᎒-3 Q-1cm-1 and the average optical transmittance was 83% in the visible range (400-700 nm). For 300 nm thick ITO films deposited at 300 °C in 10 mTorr of oxygen, the conductivity was 5.2᎒-3 Q-1cm-1 and the average transmittance in the visible range was 87%. Atomic force microscopy (AFM) measurements showed that the RMS surface roughness for the ITO films grown at room temperature was ~7 Å, which is the lowest reported value for the ITO films grown by any film growth technique at room temperature.  相似文献   

16.
The current-voltage relationships of deposited structures are measured for cluster structures consisting of nanoparticles of lead telluride. Variation in the value of the tunnel current is shown. Optimum conditions for the possible emergence of quantum-hopping conductivity due to carrier tunneling (the characteristic sizes of the nanoclusters and the distances between them) are determined.  相似文献   

17.
Ultrafast laser ablation of ITO thin film coated on the glass has been investigated as a function of laser fluence as well as the number of laser pulses. The ablation threshold of ITO thin film was found to be 0.07 J/cm2 that is much lower than that of glass substrate (about 1.2–1.6 J/cm2), which leads to a selective ablation of ITO film without damage on glass substrate. The changes in the electrical resistance and morphology of ablated trench of ITO electrode were found to be strongly dependent on the processing conditions. We present the performance of organic light-emitting diodes (OLED) fabricated with ITO electrode patterned by ultrafast laser ablation.  相似文献   

18.
The processes of forming cadmium telluride films upon vapor-phase deposition onto a substrate in a thermal field of the temperature gradient along the substrate plane are studied. The results of technological, geometric, electron diffraction, and electron microscopic investigations are reported. It is found that the thermal field of temperature gradient leads to a change in the duration of the Ostwald ripening stage and, under certain conditions, enhances the perfection of the formed structure. The mechanism of the influence of a thermal field on the Ostwald ripening is established. The results obtained are in agreement with the current theory of film formation.  相似文献   

19.
Films of p-type Sb2Te3 and of n-type CdS have been examined for Hall effect, electrical conductivity, and differential thermo-emf; concentration, mobility, and activation energy are derived. The mobility in CdS is increased by indium doping.  相似文献   

20.
Polycrystalline In2Se3 semiconducting thin films were prepared by using relatively simple chemical bath deposition method at room temperature by the reaction between indium chloride, tartaric acid, hydrazine hydrate and sodium selenosulphate in an aqueous alkaline medium. Various preparative conditions of thin film deposition are outlined. The as grown films were found to be transparent, uniform, well adherent and red in color. The films were characterized using X-ray diffraction (XRD), scanning electron microscopy, atomic absorption spectroscopy and energy dispersive atomic X-ray diffraction (EDAX). The XRD analysis of the film showed the presence of polycrystalline nature with hexagonal crystal structure. SEM study revels that the grains are homogenous, without cracks or pinholes and well covers the glass substrate. The optical absorption and electrical conductivity was measured. The direct optical band gap value for the films was found to be of the order of 2.35 eV at room temperature and have specific electrical conductivity of the order of 10−2 (Ω cm)−1 showing n-type conduction mechanism. The utility of the adapted technique is discussed from the view-point of applications considering the optoelectric and structural data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号