首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The structure state of carbon eutectoid steel has been studied by the in situ neutron diffraction method in the temperature range from room temperature to 800°C. It has been shown that an increase in the temperature is accompanied by a decrease in the concentration of carbon in cementite, whereas its weight fraction and the parameters of the orthorhombic lattice change slightly. The ab initio calculations of the nonstoichiometric carbides Fe3C x (0 < x < 1) indicate that the structure of cementite remains stable upon the appearance of vacancies in the carbon sublattice with a relatively low formation energy. Thus, cementite should be considered as an interstitial phase Fe3C x with a wide homogeneity range.  相似文献   

2.
Ceramic samples of Bi1 ? x Sr x FeO3 ? δ have been investigated using X-ray diffraction analysis, Raman spectroscopy, and infrared spectroscopy. It has been shown that the spectra of these solid solutions should be considered as a superposition of resonant phonon responses of the cubic perovskite and a relaxation response. No relaxators are observed in the pure compounds BiFeO3 and SrFeO3 ? δ. It has been found that two concentration phase transitions occurs with the symmetry changes $R3c \leftrightarrow Pm\bar 3m$ in the range 0.1 < x < 0.2 and $Pm\bar 3m \leftrightarrow P4mm$ in the range 0.8 < x < 1.0.  相似文献   

3.
《Solid State Ionics》2006,177(19-25):1761-1765
Defect structure and conductivity behaviour are discussed in the solid solution Bi3Nb1−xYxO7−x(0.0  x  1.0). Investigations were carried out using a combination of ac impedance spectroscopy and powder X-ray and neutron diffraction. Low temperature conductivity and activation energy both increase as a function of x. The former is attributed to an increase in oxide ion vacancy concentration, whereas the latter is due a redistribution of oxide ion vacancies as determined by neutron diffraction measurements. The defect structures at room temperature and 800 °C are presented. Curvature in Arrhenius plots of conductivity throughout the composition range is associated with a temperature dependent redistribution of oxide ions.  相似文献   

4.
The high-temperature cubic phase of non-stoichiometric strontium ferrite SrFeOx (2.5≤x≤3.0) has been studied by in situ neutron powder diffraction in air over the temperature range 300-1273 K. The composition of SrFeOx changes within the range 2.56≤x≤2.81 from 1273 to 673 K, respectively.Rietveld refinements of the diffraction patterns show that the high-temperature cubic phase of SrFeOx is consistent with a face-centred Fm3c structure. This structure leads to agreement with previous density measurements. This cell allows the high-temperature structure of SrFeOx to be described in terms of a solid solution of the composition end members. Cubic SrFeOx at high temperature is found to closely obey Vegard's law. The density of cubic SrFeOx is also found to exhibit a linear relationship with composition.  相似文献   

5.
Thermal desorption of hydrogen from the bulk of the system ZrV2Hx, 0.3 ? x ? 4.27, shows spectra which develop from a single peak, for x < 1, to a spectrum that consists of 3 peaks and a shoulder for x ? 4.27. A model is proposed to explain the origin of these peaks and relates them to a consecutive desorption of the hydrogens from the different interstitial sites, in agreement with neutron diffraction data on the sites' occupancy. However, neutron diffraction indicates that up to x ≈ 2.5 the hydrogens occupy the tetrahedral sites formed by 2 Zr and 2 V, nevertheless our results show that there is a large difference in the bonding energy of these sites for hydrogens with x < 1 and hydrogens with 1 < x < 2.5.  相似文献   

6.
《Solid State Ionics》2006,177(35-36):3037-3044
The average structure and microstructure of a lithium-ion conducting perovskite La2/3−xLi3xTiO3 (x = 0.12) were investigated using neutron diffraction and transmission electron microscopy (TEM). The obtained results were compared with those of previous studies on La2/3−xLi3xTiO3 series compounds, and the relationship between their structures and ionic conduction was discussed. The Rietveld refinement using neutron diffraction data reveals that the average structure (space group: Cmmm) of furnace-cooled Li-rich La2/3−xLi3xTiO3 (x = 0.12) involves alternative ordered arrangement of La along the c-axis and anti-phase-tilt of TiO6 octahedra along the b-axis as with Li-poor La2/3−xLi3xTiO3(x = 0.05). It was found that the strong correlation between structure and percolative diffusion pathways in the perovskites is primarily referred to the ordered arrangement of La ions, and the “bottleneck” square—surrounded by four oxygen ions determined by the distortion and tilt of TiO6 octahedra. In addition, the 90°-oriented micro-domain structure, which also influences the percolative diffusion pathways in La2/3−xLi3xTiO3, was observed by TEM.  相似文献   

7.
The mixed spinel-perovskite composites of xMnFe2O4-(1-x)BiFeO3 with x=0, 0.1, 0.2, 0.3 and 0.4 were prepared by solid state reaction method. The structure and grain size were examined by means of X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The XRD results showed that the composites consisted of spinel MnFe2O4 and perovskite BiFeO3 phases after being calcined at the temperature 950 °C for 2 h. The grain size ranged from 0.8 to 1 μm. Magnetization was found to increase with increasing concentration of ferrite content. The variation of dielectric constant and dielectric loss with frequency showed dispersion in the low frequency range. Magnetocapacitance was also observed in the prepared composites, which may be the sign of magnetoelectric coupling in the synthesized composites at room temperature.  相似文献   

8.
Experimental results of the X-ray absorption spectroscopy, Mössbauer spectroscopy (isomer shift) and neutron diffraction are presented for the series of EuCu2(Si x Ge1 ? x )2 polycrystalline samples (0 < x < 0.75). Homogeneous intermediate valence state is established for Eu ions as well as long range magnetically ordered state at the temperatures below 10–15 K. Observation of the ordered magnetic moments at Eu site gives rise to the experimental statement for the coexistence of valence fluctuations and long range magnetic order takes place in the wide range of Ge concentrations for this substance.  相似文献   

9.
The structural, magnetic, and magnetotransport properties of Pr0.5Sr0.5Co1 − x Mn x O3 (x < 0.65) perovskites are studied by magnetization and electrical conductivity measurements in magnetic fields up to 14 T and by neutron diffraction. In the manganese concentration range x < 0.5 and T = 300 K, the crystal structure is described by monoclinic space group I2/a; at x > 0.5, it is described by orthorhombic space group Imma. When the temperature decreases, a structural transformation without changing the symmetry takes place in all compounds. This transformation is caused by an active role of the inner shells of the praseodymium ion in chemical bond formation. The substitution of manganese for cobalt breaks a long-range ferromagnetic order near x ≈ 0.25, and a metal-dielectric transition occurs at x ≈ 0.15. The negative magnetoresistance is found to be maximal near a critical manganese concentration, where a long-range magnetic order is broken; it reaches 95% in a field of 14 T at T = 10 K for x = 0.2. An unusual dielectric magnetic state with a small spontaneous magnetic moment and a sharp transition into a paramagnetic state at T > 200 K is revealed in the concentration range 0.30 ≤ x ≤ 0.65 in spite of the absence of coherent magnetic neutron scattering. A model is proposed to explain the behavior of the magnetic properties in this phase.  相似文献   

10.
Neutron scattering is used to study the structure and dynamics of Me1 − x (NH4) x SCN (Me = K, Rb) mixed crystals along the concentration section of 0.0 < x < 1.0 at room temperature 10 and 290 K. Phase transitions in Me1 − x (NH4) x SCN mixed crystals are analyzed by neutron powder diffraction. The measured spectra of inelastic incoherent neutron scattering from mixed crystals in a concentration range of 0.0 < x < 1.0 at 10 are transformed into the generalized phonon density of states G(E) in the one-phonon incoherent approximation. Using G(E), we determine the changes in ammonium ion dynamics during phase transitions. Low energy resonance and local translational (two bands) and librational (two bands) modes are observed in the disordered rhombic phase at 10 K. The low energy resonance mode is not found in the ordered monoclinic phase at 10 K, though the local translational mode in the form of two bands and the local librational mode in the form of four bands are present there. The low energy resonance mode appears due to hybridization of the phonon spectrum of the host crystal with rotational tunneling modes of the split librational ground state of the impurity’s molecular ammonium ion.  相似文献   

11.
The crystal structure and magnetic properties of a system of Pr0.5Sr0.5Co1 ? x Mn x O3 solid solutions were studied by neutron diffraction and magnetization measurements. It is shown that, at a low manganese concentration, the structure can be described by the I/2a monoclinic space group; with increasing substitution level x the structure becomes orthorhombic. For x > 0.9 the crystal structure is tetragonal at high temperatures and the symmetry is lowered to orthorhombic with lowering the temperature. The substitution of cobalt for manganese leads to the destruction of long-range ferromagnetic order near x ?? 0.25. A transition from the high-temperature ferromagnetic phase to the A-type low-temperature antiferromagnetic phase is observed at x ?? 0.93 in the temperature range 110?C160 K.  相似文献   

12.
The crystal structure of iron-doped barium titanate BaTi1–x Fe x O3 is studied by neutron diffraction in the range of 0 ≤ x ≤ 0.12. At low concentrations of iron, x < 0.01, and at room temperature, these compounds have a polar structure with tetragonal symmetry with space group P4mm. The temperature of the transition of the tetragonal ferroelectric phase into the cubic paraelectric phase with space group Pm \(\bar 3\) m for an iron concentration of x = 0.01 is 390 K (for pure BaTiO3, it is 410 K). At an iron concentration of x = 0.07, the crystal structure of the studied compounds varies, and it is described by the centrosymmetric hexagonal space group P63/mmc. The structural parameters of various phases of compound BaTi1–x Fe x O3 are determined from the experimental data.  相似文献   

13.
Magnetic properties of the Ce1-xLaxMn2Si2 system were investigated by means of neutron diffraction and magnetometry. The samples with low La concentration (x?0.5) have antiferromagnetic properties. A transition from an antiferromagnetic to a ferromagnetic state can be observed for x=0.6 (for increasing temperature). More La leads to the samples being ferromagnetic. A collinear magnetic structure is seen from the neutron diffraction spectra. From all the results known up to now it follows, that type of magnetic ordering, i.e. antiferro- or ferro-depends on the Mn-Mn interatomic distances in the basal plane.  相似文献   

14.
Fe-doped (Ba1−xSrx)TiO3 ceramics were prepared by solid-state reaction, and ferromagnetism was realized at room temperature. The microstructure and magnetism were modified by the Sr concentration control (0≤x≤75 at%) at a fixed Fe concentration, and the relevant magnetic exchange mechanism was discussed. All the samples are shown to have a single perovskite structure. When increasing the Sr concentration, the phase structure is transformed from a hexagonal perovskite into a cubic perovskite, with a monotonic decrease in lattice parameters induced by ionic size effect. The room-temperature ferromagnetism is expected to originate from the super-exchange interactions between Fe3+ on pentahedral and octahedral Ti sites mediated by the O2− ions. The increase in Sr addition modifies two main influencing factors in magnetic properties: the ratio of pentahedral to octahedral Fe3+ and the concentration of oxygen vacancies, leading to a gradually enhanced saturation magnetization. The highest value, obtained for Fe-doped (Ba0.25Sr0.75)TiO3, is an order of magnitude higher than that of the Fe-doped BaTiO3 system with similar Fe concentration and preparation conditions, which may indicate (Ba1−xSrx)TiO3 as a more suitable matrix material for multiferroic research.  相似文献   

15.
Ceramic (La0.7Ca0.3)1 ? x Mn1 + x O3 samples are studied by X-ray diffraction, resistive, magnetic, 55Mn NMR, and magnetoresistance methods. The concentration changes of lattice parameter a of the cubic perovskite structure and its average ionic radius are in good agreement if the concentrations of anion and cation vacancies and nanostructured clusters with Mn2+ in the A positions increase with x. Phase transition temperatures T ms and T c weakly depend on x, and the electrical resistivity and the activation energy decrease substantially with increasing x due to a change in the imperfection of the perovskite structure. An analysis of the broad asymmetric 55Mn NMR spectra of the samples indicate a high-frequency Mn3+? Mn4+ electron superexchange and nonuniform magnetic and valence states of these ions because of a nonuniform distribution of ions and defects, which decrease the amplitude resonance frequency with increasing x. The magnetoresistive (MR) effect near phase-transition temperatures T ms and T c increases substantially with x and is caused by the effect of a magnetic field on the scattering of charge carriers by intracrystallite nanostructured heterogeneities of an imperfect perovskite structure. The second MR effect is located in the low-temperature range, is related to tunneling through mesostructural crystallite boundaries, and decreases weakly with increasing x. A correlation is found between the hyperstoichiometric manganese content, the imperfection of the perovskite structure, and the magnitude of the MR effect.  相似文献   

16.
The dielectric and acoustic properties of (1 ? x)SrTiO3?xBiFeO3 solid solutions (0 ≤ x ≤ 1) have been studied in the temperature range from 4.2 to 850 K. Evolution of the antiferrodistortive transition and its suppression in the concentration range 0.1 < x < 0.2 have been revealed. X-ray diffraction data obtained at room temperature, as well as the observed acoustic anomalies combined with dielectric measurements, have been used to estimate the concentration range of the existence of the relaxor state, as well as of the formation and coexistence of the antiferromagnetic and ferroelectric phases at high BiFeO3 concentrations.  相似文献   

17.
The hyperfine fields of 51V and 53Cr in diluted alloys VxFe1?x and CrxFe1?x have been measured by NMR. No concentration dependence is found for x<2%. Therefore we conclude that the magnetic moments of the impurities are constant in contrast to recent neutron scattering results.  相似文献   

18.
Structural and vibrational characteristics of methylammonium(MA) halide perovskite MAPbBr3-xClx single crystals (x = 0–3) were investigated by using powder X-ray diffraction and Raman scattering experiments. The lattice constant in the cubic phase obtained from powder X-ray diffraction peaks at room temperature showed nearly a linear dependence as a function of composition. On the other hand, some of the Raman mode frequencies obtained from single crystals exhibited substantial changes in both frequency shifts and half widths over the investigated composition range. Especially, the MA torsional mode showed a significant change from 325 to 485 cm−1 and mode splitting as Cl was replaced by Br. This mode splitting was more clearly seen at low temperatures reflecting the symmetry lowering of the local structure. The contrast between the linear change in the lattice constant and the substantial change in the vibrational frequencies and half widths of the MA torsional mode in the intermediate composition range indicates the local heterogeneous environment for the MA cations caused by the substitutional disorder.  相似文献   

19.
An exhaustive study of structural, electrical and transport properties on the perovskite stagnate Sn(Ba,Sr)O3 was performed. Samples of SnBa1−xSrxO3 with 0≤x≤1.00 were prepared by the solid state reaction method. The crystallographic structure was studied by X-ray diffraction experiments and Rietveld refinement using the GSAS code. Results reveal the material synthesized in a cubic structure (space group Pm3?m, #221) for 0≤x≤0.50 and in an orthorhombic (space group Pnma, #62) for x>0.50. The approximate grain size was found from experiments' Scanning Electron Microscopy. The electric response was studied by the Impedance Spectroscopy technique from 10.0 mHz up to 0,10 MHz. Electric polarization measurements for SnSrO3 and SnBaO3 were determined through curves of polarization as a function of applied electric field, which reveal the ferroelectric character of the material. From the saturation polarization the dielectric constants of materials were calculated.  相似文献   

20.
Ribbons of Fe100−xGax (x=15, 17.5, 19.5 and 22.5) were prepared by rapid solidification from the melt. 57Fe Mössbauer spectroscopy and high resolution neutron diffraction have revealed that Fe100−xGax alloys with x=15 and 17.5 have the disordered bcc (A2) structure even after annealing, but the alloy with x=19.5 developed the short-range ordered D03 phase when annealed. The x=22.5 alloys showed mainly D03 phase with a fraction of bcc phase. A fraction of the bcc phase transformed into D03 phase and the long-range ordering of D03 phase was improved after annealing. 57Fe Mössbauer spectra showed no observable L12 phase in any samples even though less than 1% volume of L12 phases has been found in the annealed samples by neutron diffraction. The additional absorption at hyperfine field of 25 T in x=22.5 samples was regarded as a result of imperfect D03 structure, rather than L12 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号