首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc sulphide (ZnS) nanoparticles were prepared by homogeneous hydrolysis of zinc sulphate and thioacetamide (TAA) at 80 °C. After annealing at temperature above 400 °C in oxygen atmosphere, zinc oxide (ZnO) nanoparticles were obtained. The ZnS and ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission microscopy (HRTEM), selected area electron diffraction (SAED), by BET and BJH methods used for surface area and porosity determination. The photocatalytic activity of the as-prepared ZnO samples was determined by the decomposition of Orange II in the aqueous solution under UV irradiation of 365 nm of wavelength.  相似文献   

2.
Thin films of zinc oxide were grown on glass substrates by thermal oxidation. The metallic zinc films were thermally oxidized at different temperatures ranging from 300 to 600 °C to yield ZnO thin films. The structural property of the thin films was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The X-ray diffraction measurements showed that the films oxidized at 300 °C were not oxidized entirely, and the films deposited at 600 °C had better crystalline quality than the rest. When the oxidation temperature increased above 400 °C, the films exhibited preferred orientation along (002) and high transmittance ranging from 85% to 98% in vis–near-infrared band. Meanwhile, the films showed a UV emission at about 377 nm and green emission. With the increasing of oxidation temperature, the intensity of green emission peak was enhanced, and then decreased, disappearing at 600 °C, and the case of UV emission increased. Furthermore, a strong green emission was observed in the film sintered in pure oxygen atmosphere.  相似文献   

3.
The pyrolytic decomposition of layered basic zinc acetate (LBZA) nanobelts (NBs) into nanocrystalline ZnO NBs is investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). We also report on the gas sensing response of the resulting ZnO nanomaterial to CO. The LBZA NBs are grown at 65 °C in an aqueous solution of zinc acetate dihydrate. AFM and SEM results show as-grown products possess the characteristic layered structure of the LBZA crystals. XRD and XPS results show that annealing as-grown products at 210 °C in air causes a transformation from zinc acetate to nanocrystalline ZnO NBs via thermal decomposition. The ZnO crystalline domain size increases with temperature from 9.2 nm at 200 °C to 94 nm at 1000 °C, as measured from XRD. SEM shows evidence of sintering at 600 °C. The thickness of the NBs, determined via AFM, ranges from 10 to 50 nm and remains approximately constant with annealing temperature. XPS confirmed the chemical transformation from zinc acetate to ZnO and showed a significant remaining zinc hydroxide component for the ZnO NBs consistent with published results. PL measurements at room temperature show a blue shift in peak emission as the nanobelts change from LBZA to ZnO at 200 °C. Above this transition temperature, the ZnO nanobelts possess strong band edge emission at 390 nm and little broad band emission in the visible region. The AFM and SEM images reveal that the crystallites within the nanobelts orientate in rows along the long axis during annealing. This structure provides a high surface area to volume ratio of aligned nanoparticles which is beneficial for gas sensing applications. Gas sensors fabricated from 400 °C annealed nanobelts showed a response of 1.62 when exposed to 200 ppm of CO in dry air at 400 °C, as defined by the ratio of resistance before and during exposure. This indicates that ZnO nanostructures obtained by thermal decomposition of LBZA NBs could provide a cost effective route to high sensitivity gas sensors.  相似文献   

4.
Ce-doped silica films with different Ce concentrations were prepared by ion-beam sputtering and ion implantation. The films containing 1.2 at% Ce were annealed at temperatures from 500 °C to 1200 °C in air ambient, and were annealed in different ambient at 1100 °C. Ce-related photoluminescence was observed in films sensitive to the Ce concentrations, annealing temperatures and the annealing ambient. The peak intensity of the photoluminescence band is approximately linear with Ce concentrations. Also, the photoluminescence intensity is dependent on the annealing temperatures and reaches its highest value after annealing at 700 °C. In addition, the experimental results show that compared with the annealing in an air ambient, the photoluminescence intensity can be enhanced with nitrogen gas. There would be no obvious change for the photoluminescence position or shape.  相似文献   

5.
The effects of annealing parameters on the surface morphology, crystallinity, and optical properties of ZnO disc were investigated. Variations in the annealing temperatures and gas flow rates were found to have a profound impact; grain growth was enhanced even at the low annealing temperature of only 400 °C. SEM and AFM revealed smooth and uniform grain growth after annealing treatment, especially at 800 °C. A unique secondary growth of ZnO nanoparticles and multilayer grain growth that have not been reported elsewhere were also observed. The annealing treatment was also found to improve grain crystallinity as illustrated by the lowering of intrinsic compressive stress based on the XRD lattice constant and FWHM data. The PL spectra of the M-Disc showed a huge band edge emission at 371–376 nm. In contrast, the N-Disc exhibited a dominant and broad visible PL emission in the green band with peaks at 519–533 nm. These peaks were attributed to a very high concentration of structural defects (oxygen vacancies and zinc/oxygen interstitials). The annealing conditions had a significant effect on the properties of ZnO. Increased percentage of oxygen in the O/Ar from 50% to 100% did not change the M-Disc spectra. However, the XRD pattern of the N-Disc revealed that the (0 0 2) peak intensity decreased, the position of the (1 0 1) peak slightly shifted toward a higher angle, and the FWHM of the (1 0 1) peak improved. The experimental results showed that thermal annealing could enhance the different properties of ZnO discs.  相似文献   

6.
《Current Applied Physics》2010,10(3):807-812
ZnO nanoparticles doped with Cu were synthesized by solid state reaction using different precursor routes and varying growth environment. Average crystallite size varied from 40 to 100 nm depending upon synthesis temperature, lower temperature favouring smaller particle size. Scanning electron microscope (SEM) images showed that particles synthesized at 250 °C were in the shape of nanorods but those synthesized at 900 °C had spherical shape. Luminescence emission showed marked dependence on the growth conditions varying from ultraviolet (UV) emission to green emission. For making the luminescent nanoparticles bio-compatible, a bioinorganic interface on ZnO:Cu nanoparticles was created by coating them with inert silica. Surface modification of ZnO:Cu was also done with lipophilic polymethylmethacrylate (PMMA). ZnO:Cu nanoparticles showed hexagonal wurtzite structure and the coating of silica was confirmed with the presence of two extra peaks due to silica in the XRD spectra. Thermogravimetric analysis (TGA) and FTIR spectroscopy indicated that PMMA molecules were adsorbed on the surface of ZnO:Cu nanoparticles. SEM images revealed that PMMA adsorption improved the dispersibilty of ZnO:Cu nanoparticles.  相似文献   

7.
Effect of annealing temperature on characteristics of sol–gel driven ZnO thin film spin-coated on Si substrate was studied. The UV–visible transmittance of the sol decreased with the increase of the aging time and drastically reduced after 20 days aging time. Granular shape of ZnO crystallites was observed on the surface of the films annealed at 550, 650, and 750 °C, and the crystallite size increased with the increase of the annealing temperature. Consequently nodular shape of crystallites was formed upon increasing the annealing temperature to 850 °C and above. The current–voltage characteristics of the Schottky diodes fabricated with ZnO thin films with various annealing temperatures were measured and analyzed. It is found that, ZnO films showed the Schottky characteristics up to 750 °C annealing temperature. The Schottky diode characteristics were diminished upon increasing the annealing temperature above 850 °C. XPS analysis suggested that the absence of oxygen atoms in its oxidized state in stoichiometric surrounding, might be responsible for the diminished forward current of the Schottky diode when annealed above 850 °C.  相似文献   

8.
Evolution of the microstructure and optical properties of ZnO nanoparticles in a mild sol–gel synthesis process is studied. The ZnO nanostructures were prepared by reacting zinc acetate dihydrate with NaOH in water at 50−60 °C. Evolution of ZnO nanostructures with reaction time is studied using UV–Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy techniques. During the process of Zn2+ hydroxylation, well defined rod-like crystals were formed within 15 min. Further hydroxylation leads to the formation of a gel-like structure within about 45 min. However, XRD, FT-IR and energy dispersive spectroscopy (EDS) confirmed that these initial products were zinc hydroxyl double salts (Zn-HDS), not ZnO. On ageing the reaction mixture, ZnO nanoparticles with wurtzite structure evolved.  相似文献   

9.
This study investigated the effect of annealing temperature on the precipitation behavior of Crofer® 22 H at 600 °C, 700 °C, and 800 °C. The grain size distribution, precipitate phase identification, and microstructure were analyzed using electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDS). The morphology of Laves phase (Fe,Cr,Si)2(Nb,W) precipitates having the Cr2Nb structure changed from strip-like to needle-shaped as the annealing temperature was increased. The precipitates of the Laves phase also shifted from the grain boundaries to the grain interiors when the temperature was increased. However, the average grain size (150 μm) of the ferritic matrix did not significantly change at 600 °C, 700 °C, and 800 °C for 10 h.  相似文献   

10.
Transparent ZnO layers were prepared on silica glass substrates by the spin coating-pyrolysis process. As-deposited films were pre-fired at 250 °C for 60 min, at 350 °C for 30 min, and at 500 °C for 10 min, followed by heat treatment at 900 °C for 30 min in air. The ZnO films were analyzed by high resolution X-ray diffraction, field emission-scanning electron microscopy, scanning probe microscopy, and ultraviolet–visible–near infrared spectrophotometry. (0 0 2)-oriented ZnO films were obtained by pre-firing at 350 °C and at 500 °C. All the ZnO films exhibited a high transmittance, above 80%, in the visible region, and showed a sharp fundamental absorption edge at 0.38–0.40 μm. The most highly c-axis-oriented ZnO with a homogeneous surface was observed at a pyrolysis temperature of 350 °C.  相似文献   

11.
Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol–gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm−3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.  相似文献   

12.
《Applied Surface Science》2001,169(1-2):140-146
Ion channeling and electrical characterization techniques have been used in order to study the effects of thermal annealing on phosphorus implanted silicon wafers. A low energy thermally activated process (0.15–0.28 eV) is clearly observed after annealing at low temperature (≤500 °C). This electrical activation mechanism is found to be well described by a local relaxation model involving point defect migration. It is shown that in order to achieve a complete electrical activation of the implanted impurities, an annealing must be performed at temperatures higher than 700 °C.  相似文献   

13.
In this work, ZnO coatings were fabricated by the RF-sputtering method on quartz substrates in an inert gas ambient of Ar followed by a thermal oxidation process in air at different temperatures. The effect of thermal oxidation temperatures on the structures and photoluminescence (PL) properties of the coatings were studied. The structural characteristics of the samples were analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM). The PL spectra were obtained by using a Xe laser as a light source with an excitation wavelength of 325 nm at room temperature. The force-curves were obtained by AFM. The results show that all the prepared ZnO coatings have a compact hexagonal wurtzite structure. With the increasing annealing temperature from 400 °C to 600 °C, the particle size, surface RMS roughness, photoluminescence intensity and adhesion force of the prepared ZnO coatings were increased as well.  相似文献   

14.
《Current Applied Physics》2010,10(2):452-456
The GZO/Ag/GZO sandwich films were deposited on glass substrates by RF magnetron sputtering of Ga-doped ZnO (GZO) and ion-beam sputtering of Ag at room temperature. The effect of GZO thickness and annealing temperature on the structural, electrical and optical properties of these sandwich films was investigated. The microstructures of the films were studied by X-ray diffraction (XRD). X-ray diffraction measurements indicate that the GZO layers in the sandwich films are polycrystalline with the ZnO hexagonal structure and have a preferred orientation with the c-axis perpendicular to the substrates. For the sandwich film with upper and under GZO thickness of 40 and 30 nm, respectively, it owns the maximum figure of merit of 5.3 × 10−2 Ω−1 with a resistivity of 5.6 × 10−5 Ω cm and an average transmittance of 90.7%. The electrical property of the sandwich films is improved by post annealing in vacuum. Comparing with the as-deposited sandwich film, the film annealed in vacuum has a remarkable 42.8% decrease in resistivity. The sandwich film annealed at the temperature of 350 °C in vacuum shows a sheet resistance of 5 Ω/sq and a transmittance of 92.7%, and the figure of merit achieved is 9.3 × 10−2 Ω−1.  相似文献   

15.
The surface properties of vertically aligned ZnO nanowires grown by chemical vapour deposition on GaN using a gold layer as a catalyst are investigated by X-ray Photoelectron Spectroscopy as a function of annealing temperature in ultra high vacuum (UHV). The nanowires are 8.5 μm long and 60 nm wide. 87% of the surface carbon content was removed after annealing at 500 °C in UHV. Analysis of the gold intensity suggests diffusion into the nanowires after annealing at 600 °C. Annealing at 300 °C removes surface water contamination and induces a 0.2 eV upward band bending, indicating that adsorbed water molecules act as surface electron donors. The contaminants re-adsorbed after 10 days in UHV and the surface band bending caused by the water removal was reversed. The UHV experiment also affected the nanowires arrangement causing them to bunch together. These results have clear implications for gas sensing applications with ZnO NWs.  相似文献   

16.
The transparent nanocrystalline thin films of undoped zinc oxide and Mn-doped (Zn1−xMnxO) have been deposited on glass substrates via the sol–gel technique using zinc acetate dehydrate and manganese chloride as precursor. The as-deposited films with the different manganese compositions in the range of 2.5–20 at% were pre-heated at 100 °C for 1 h and 200 °C for 2 h, respectively, and then crystallized in air at 560 °C for 2 h. The structural properties and morphologies of the undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/Vis spectroscopy. The analyzed results indicates that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn related phases. Room temperature photoluminescence is observed for the ZnO and Mn-doped ZnO thin films.  相似文献   

17.
Zinc oxide thin films have been obtained in O2 ambient at a pressure of 1.3 Pa by pulsed laser deposition (PLD) using ZnO powder target and ceramic target. The effect of temperature on structural and optical properties of ZnO thin films was investigated systematically by XRD, SEM, FTIR and PL spectra. The results show that the best structural and optical properties can be achieved for ZnO thin film fabricated at 700 °C using powder target and at 400 °C using ceramic target, respectively. The PL spectrum reveals that the efficiency of UV emission of ZnO thin film fabricated by using powder target is low, and the defect emission of ZnO thin film derived from Zni and Oi is high.  相似文献   

18.
Growth characteristic and optical properties of the amorphous ZnO thin films prepared on soda-lime–silica glass substrates by chemical solution process at 100 and 200 °C were investigated by using X-ray diffraction analysis, scanning probe microscope, ultraviolet spectrophotometer, and photoluminescence. The films exhibited an amorphous pattern even when finally heat treated at 100–200 °C for 60 min. The photoluminescence spectrum of amorphous ZnO films shows a strong near-band-edge emission, while the visible emission is nearly quenched.  相似文献   

19.
In this work, the pulsed electron beam deposition method (PED) is evaluated by studying the properties of ZnO thin films grown on c-cut sapphire substrates. The film composition, structure and surface morphology were investigated by means of Rutherford backscattering spectrometry, X-ray diffraction and atomic force microscopy. Optical absorption, resistivity and Hall effect measurements were performed in order to obtain the optical and electronic properties of the ZnO films. By a fine tuning of the deposition conditions, smooth, dense, stoichiometric and textured hexagonal ZnO films were epitaxially grown on (0001) sapphire at 700 °C with a 30° rotation of the ZnO basal plane with respect to the sapphire substrate. The average transmittance of the films reaches 90% in the visible range with an optical band gap of 3.28 eV. Electrical characterization reveals a high density of charge carrier of 3.4 × 1019 cm?3 along with a mobility of 11.53 cm²/Vs. The electrical and optical properties are discussed and compared to ZnO thin films prepared by the similar and most well-known pulsed laser deposition method.  相似文献   

20.
Phosphorus irradiation at a low energy (50 keV) and at a dosage of 8×1014 ions/cm2 was carried out on 〈002〉 ZnO films grown by using a pulsed laser deposition technique (Sample A). Subsequent rapid thermal annealing at 650 °C and 750 °C was performed to remove defects resulting from the irradiation (samples B and C, respectively). Atomic force microscopy was used to determine the root mean square roughness, which was 10.07, 8.66, and 9.31 nm for samples A, B, and C, respectively. Low-temperature photoluminescence measurements revealed increased deep-level defect peaks following irradiation; however, the subsequent annealing minimized the defects. Although the dominant donor-bound exciton peak verifies the n-type conductivity of the films, the free–electron–to–acceptor and donor-to-acceptor pair peaks in the irradiated samples confirm an increase in acceptor concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号