首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Transition metal oxides with composite xLi2MnO3 ·  (1  x)LiMO2 rocksalt structures (M = Mn, Ni, Co) are of interest as a new generation of cathode materials for high energy density lithium-ion batteries. After electrochemical activation to 4.6 or 4.8 V (vs. Li0) at 50 °C, xLi2MnO3 · (1  x)LiMn0.33Ni0.33Co0.33O2 (x = 0.5, 0.7) electrodes deliver initial discharge capacities (>300 mAh/g) at a low current rate (0.05 mA/cm2) that exceed the theoretical values for lithiation back to the rocksalt stoichiometry (240–260 mAh/g), at least during the early charge/discharge cycles of the cells. Attention is drawn to previous reports of similar, but unaccounted and unexplained anomalous behavior of these types of electrode materials. Possible reasons for this anomalous capacity are suggested. Indications are that electrodes in which M = Mn, Ni and Co do not cycle with the same stability at 50 °C as those without cobalt.  相似文献   

2.
The tin adlayer formed by spontaneous deposition on Au(1 1 1) was characterized by cyclic voltammetry and in situ scanning tunneling microscopy (STM) in sulphuric acid solution. Cyclic voltammetry measurements showed oxidation peaks in the potential range −0.60  E/V vs SSE  0, which can be ascribed to the dissolution of the Sn adsorbed layer. STM images of the Au(1 1 1)/Sn modified surface showed that tin nucleated both on step edges and on the flat terraces forming two-dimensional islands. The anodic polarization of this modified surface produced the gradual dissolution of the Sn adlayer which was evidenced by the formation of some holes and the reduction of the initial terraces to many small islands. STM images with atomic resolution obtained on these islands displayed an hexagonal expanded atomic structure. After the anodic stripping of this Sn adsorbed layer the images exhibited the typical Au(1 1 1) terraces with a (1 × 1) atomic structure. However, at more anodic potentials another dissolution process was observed producing noticeable changes on the surface morphology which could be ascribed to the dissolution of a Au–Sn surface alloy.  相似文献   

3.
This work reports the results of a thermodynamic investigation of the ternary mixed-electrolyte system (CsCl + CaCl2 + H2O). The activity coefficients of this mixed aqueous electrolyte system have been studied with the electromotive force measurement (EMF) of the cell: Cs ion-selective electrode (ISE)|CsCl(mA), CaCl2(mB), H2O|Ag/AgCl at T = 298.15 K and over total ionic strengths from (0.01 to 1.50) mol · kg?1 for different ionic strength fractions yB of CaCl2 with yB = (0, 0.2, 0.4, 0.6, and 0.8). The cesium ion-selective electrode (Cs-ISE) and the Ag/AgCl electrode used in this work were made in our laboratory and had a good Nernst response. The experimental results obey the Harned rule, and the Pitzer model can be used to describe this ternary system satisfactorily. The osmotic coefficients, excess Gibbs free energies and activities of water of the mixtures were also calculated.  相似文献   

4.
Electrochemical cells with two ion-selective electrodes, a cation ion-selective electrode against an anion ion-selective electrode, were used to measure the activity coefficient of amino acids in aqueous electrolyte solutions. Activity coefficient data were measured for (H2O + NaBr + glycine) and (H2O + NaBr + l-valine) at T=298.15 K. The maximum concentrations of sodium bromide, glycine, and l-valine were (1.0, 2.4, and 0.4) mol · kg−1, respectively. The results show that the presence of an electrolyte and the nature of both the cation and the anion of the electrolyte have significant effects on the activity coefficients of amino acid in aqueous electrolyte solutions.  相似文献   

5.
《Polyhedron》2007,26(9-11):1905-1911
A cyclic pentadiazo-pyridine ligand, cD5py, was prepared and its photoproduct, cC5py, in a frozen solution was confirmed to be a high-spin polycarbene with S = 10/2. The magnetic property of the 1:2 mixture of Co(p-tolsal)2; p-tolsal = N-p-tolylsalicylideniminato, and cD5py in a dilute frozen solution after irradiation was investigated by SQUID magneto/susceptometry. In the ac magnetic susceptibility measurements, the in-phase and out-of-phase components (χ′ and χ″, respectively) with frequency dependence were observed, indicating that the 1:2 complex, Co(p-tolsal)2-(cC5py)2, had slow magnetic relaxation characteristic of the single-molecule magnet (SMM). From the χ″ versus T plots with various frequencies, the values of activation barrier, Ueff, for the reverse of the magnetism was estimated to be 72 K. In the dc magnetic susceptibility measurements, the magnetic hysteresis loops were observed below 3 K. The value of the coercive force, Hc, depends on the temperature and increases on cooling. The hysteresis loop with Hc = 7.1 kOe was observed at 1.9 K.  相似文献   

6.
Coexistence curves of ( T, n), ( T, ϕ), and ( T, Ψ), where n, ϕ, and Ψ are the refractive index, volume fraction and effective volume fraction ψ = ϕ / {ϕ +  [(1   ϕ )ϕc / (1   ϕc )]}, respectively, for ternary microemulsion systems of {water  + n -nonane  +  sodium di(2-ethyl-1-hexyl)sulphosuccinate} have been determined at temperatures within 8.7 K above the critical temperature by measurements of refractive index at constant pressure and a constant molar ratio of water to sodium di(2-ethyl-1-hexyl)sulphosuccinate. The critical exponent β deduced from ( T,n ), ( T, ϕ), and ( T, Ψ) coexistence curves was found consistent with nonmonotonic crossover observed in all aqueous ionic solutions. The values of β deduced from the experimental data in the range of 1 K above Tcwere consistent with the universality class of three-dimensional Ising-like systems. The coexistence curves have been interpreted by a combination of the Wegner expansion and the rectilinear diameter. The present results indicate that the molar mass dependence of critical amplitudes, we proposed recently, is valid for microemulsion systems.  相似文献   

7.
A robust and effective composite film based on gold nanoparticles (GNPs)/room temperature ionic liquid (RTIL)/multi-wall carbon nanotubes (MWNTs) modified glassy carbon (GC) electrode was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the RTIL-nanohybrid film modified GC electrode by electrostatic adsorption. Direct electrochemistry and electrocatalysis of Cyt c were investigated. The results suggested that Cyt c could be tightly adsorbed on the modified electrode. A pair of well-defined quasi-reversible redox peaks of Cyt c was obtained in 0.10 M, pH 7.0 phosphate buffer solution (PBS). RTIL-nanohybrid film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis currents increased linearly to the H2O2 concentration in a wide range of 5.0 × 10−5– 1.15 × 10−3 M. Based on the multilayer film, the third-generation biosensor could be constructed for the determination of H2O2.  相似文献   

8.
Electrochemical cells with two ion-selective electrodes against a single-junction reference electrode were used to obtain the activity coefficients of glycine in aqueous electrolyte solutions. Activity coefficient data were presented for {H2O  +  KCl (mS)  +  glycine (mA)}, and {H2O  +  NaCl (mS)  +  glycine (mA)} atT =  298.15 K and T =  308.15 K, respectively. The results show that the presence of an electrolyte and the nature of its cation have a significant effect on the activity coefficient of glycine in aqueous electrolyte solutions and, in turn, on the method of separation from its culture media. The results of the mean ionic activity coefficients of KCl were compared with those values reported in the literature, which were obtained by the isopiestic method. It was found that the method applied in this study provides accurate activity coefficient data. The effect of temperature on the mean ionic activity coefficient of NaCl in presence of glycine was also investigated.  相似文献   

9.
Electrochemical scanning tunneling microscopy (EC-STM) was applied to observe phospholipid layers over thiol-modified gold substrates as a model biological cell membrane. On a monolayer of 1-octanethiol on Au (1 1 1), a synthetic lipid, 1,2-dihexanoyl-sn-glycero-3-phosphocholine, was introduced in a neutral 0.05 M NH4ClO4 buffer solution. The lipid molecules formed a fluidic layer at 0.0 V vs. RHE of the substrate electrode potential. By cycling the electrode potential between +0.2 V and −0.2 V, the lipid layer reversibly changed over between the fluidic phase and a striped/grainy structure. This structural change might involve partial decomposition and oligomerization of phospholipids. This method will contribute for molecular biology by revealing the nanometer-scale structure of cell membrane.  相似文献   

10.
Densities (ρ) and viscosities (η) of aqueous 1-methylpiperazine (1-MPZ) solutions are reported at T = (298.15 to 343.15) K. Refractive indices (nD) are reported at T = (293.15 to 333.15) K, and surface tensions (γ) are reported at T = (298.15 to 333.15) K. Derived excess properties, except excess viscosities (Δη), are found to be negative over the entire composition range. The addition of 1-MPZ reduces drastically the surface tension of water. The temperature dependence of surface tensions is explained in terms of surface entropy (SS) and enthalpy (HS). The measured and derived properties are used to probe the microscopic liquid structure of the bulk and surface of the aqueous amine solutions.  相似文献   

11.
Water activities in the ternary system (CaCl2 + SrCl2 + H2O) and its sub-binary system (CaCl2 + H2O) at T = 298.15 K have been elaborately measured by an isopiestic method. The data of the measured water activity were used to justify the reliability of solubility isotherms reported in the literature by correlating them with a thermodynamic Pitzer–Simonson–Clegg (PSC) model. The model parameters for representing the thermodynamic properties of the (CaCl2 + H2O) system from (0 to 11) mol  kg−1 at T = 298.15 K were determined, and the experimental water activity data in the ternary system were compared with those predicted by the parameters determined in the binary systems. Their agreement indicates that the PSC model parameters can reliably represent the properties of the ternary system. Under the assumption that the equilibrium solid phases are the pure solid phases (SrCl2  6H2O and CaCl2  6H2O)(s) or the ideal solid solution consisting of CaCl2  6H2O(s) and SrCl2  6H2O(s), the solubility isotherms were predicted and compared with experimental data from the literature. It was found that the predicted solubility isotherm agrees with experimental data over the entire concentration range at T = 298.15 K under the second assumption described above; however, it does not under the first assumption. The modeling results reveal that the solid phase in equilibrium with the aqueous solution in the ternary system is an ideal solid solution consisting of SrCl2  6H2O(s) and CaCl2  6H2O(s). Based on the theoretical calculation, the possibility of the co-saturated points between SrCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s) and between CaCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s), which were reported by experimental researchers, has been discussed, and the Lippann diagram of this system has been presented.  相似文献   

12.
Phase diagram and (liquid + liquid) equilibrium (LLE) results for {NaClO4 + polyethylene glycol 4000 (PEG 4000) + H2O} have been determined experimentally at T = (288.15, 298.15, and 308.15) K. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the values for the experimental tie-lines. The results show that the quality of fitting is better with the modified Wilson model.  相似文献   

13.
《Chemical physics》2005,309(1):33-39
The interaction of propyne with the Pt(1 1 1) and Pd(1 1 1) surfaces has been studied by means of the generalised gradient approach of density functional theory using periodic slab models. For both surfaces, the most stable adsorption mode of propyne is di-σ/π mode where the hydrocarbon is σ-bonded to two metal atoms with some additional π bonding to a third adjacent surface atom. The adsorption geometry is a highly distorted propyne with the C1 and C2 in a nearly sp2 hybridisation. Two equivalent surface structures have been found on Pt and Pd. These correspond to the adsorption on the fcc or hcp hollow sites. The adsorption energies on Pt(1 1 1) and Pd(1 1 1) are predicted to be ∼−197 and −161 kJ mol−1, respectively. The electronic factors that control the chemisorption have been analysed by means of the projected density of states.  相似文献   

14.
The value of the potential of zero total charge (pztc) of stepped Pt(1 1 1) electrodes, whose step sites have been blocked by irreversibly adsorbed bismuth, has been determined by means of the CO displacement experiment. It has been observed that the pztc of the decorated surfaces shift positively with respect to that of the substrate stepped surface electrode. In this way the electrode total charge at constant potential diminishes by effect of the adatom adsorption. The oxidation of adsorbed CO takes place at higher potentials on the decorated surfaces, pointing out a direct effect of the pztc shift on their reactivity as electrocatalyzers.  相似文献   

15.
Electrochemical deposition of PbTe from 50 mM Pb(NO3)2 + 1 mM TeO2 + 0.1 M HNO3 solution onto n-Si(1 0 0) wafers was studied using cyclic voltammetry (CV), chronoamperometry, ex situ SEM, XRD and EDX. Electrochemical behavior of n-Si(1 0 0) electrode in electrolytes 50 mM Pb(NO3)2 + 0.1 M HNO3 and 1 mM TeO2 + 0.1 M HNO3 was also studied. No underpotential deposition (UPD) of Pb and Te onto n-Si was observed in the investigated systems indicating weak Pb–Si and Te–Si interactions. Deposition of Pb and Te on n-Si occurred with overvoltage via 3D island growth. Electrosynthesis of PbTe (NaCl-like structure, a = 0.650 nm) takes place due to codeposition of Pb and Te at potentials E > EPb2+/Pb0 (lead UPD onto tellurium). Cathodic deposition of PbTe onto n-Si(1 0 0) is irreversible – there is no anodic current in the CV curve. Oxidation of PbTe on n-Si is observed only under illumination, when photoelectrons and photoholes are generated in silicon substrate.  相似文献   

16.
The electrochemical reduction of molecular oxygen (O2) has been performed at gold electrodes modified with a submonolayer of a self-assembly (sub-SAM/Au) of a thiol compound (typically cysteine (CYST)) in O2-saturated 0.5 M KOH. At bare gold electrode O2 reduction reaction proceeds irreversibly, while this reaction is totally hindered at gold electrodes with a compact structure of CYST over its surface. The partial reductive desorption of the compact CYST monolayer was achieved by controlling the potential of the CYST/Au electrode, leading to the formation of a submonolayer coverage of the thiol compound over the Au electrode surface (sub-SAM/Au), at which the CYST molecules selectively block the Au(1 0 0) and Au(1 1 0) fractions (the so-called rough domains) of the polycrystalline Au while the Au(1 1 1) component (the so-called smooth domains) remains bare (i.e., uncovered with CYST). This sub-SAM/Au electrode extraordinarily exhibits a quasi-reversible two-electron reduction of molecular oxygen (O2) in alkaline medium with a peak separation (ΔEp) between the cathodic and anodic peak potentials (Epc,Epa) of about 60 mV. The ratio of the anodic current to the cathodic one is close to unity. The formal potential (Eo) of this reaction is found to equal −150 mV vs. Ag/AgCl/KCl(sat.).  相似文献   

17.
《Chemical physics letters》2006,417(1-3):206-210
Two C–O stretching hot bands, (ν1 + 2ν3)  2ν3 and (2ν1 + ν3)  (ν1 + ν3), of the CCO radical in the ground electronic state were measured. These hot bands are red shifted by approximately 70 cm−1 compared to the C–O stretching fundamental. CCO was produced in a discharge through a flowing mixture of carbon suboxide and helium. The spectra were recorded using a diode laser spectrometer. The band origins were determined to be 1904.32512(62) and 1902.69130(56) cm−1 for (ν1 + 2ν3)  2ν3 and (2ν1 + ν3)  (ν1 + ν3), respectively. The measurements in this band together with previously reported frequencies in the C–C and C–O stretching regions were analysed to determine harmonic frequencies and anharmonicity constants.  相似文献   

18.
Electrocatalytic oxidation of nicotine at multiwalled carbon nanotube (MWCNT)–alumina-coated silica (ACS) nanocomposite modified glassy carbon electrode are described. The sensing performance of the MWCNT–ACS nanocomposite modified glassy carbon electrode for the electrooxidation of nicotine was investigated using cyclic voltammetry and amperometry in 0.1 M phosphate buffer solution (pH 8). The MWCNT–ACS nanocomposite modified glassy carbon electrode exhibited the abilities to decrease the electrooxidation potential, to prevent the electrode surface fouling, and to raise the current responses. The MWCNT–ACS nanocomposite responded rapidly to nicotine with a sensitivity of 1.786 A M?1 cm?2 and a detection limit of 1.42 μM (according to 3σ criterion). A signal almost 180 times more sensitive was obtained at MWCNT–ACS nanocomposite modified glassy carbon electrodes as compared to bare glassy carbon electrode. The nicotine oxidation potential obtained in this study is much lower than that at boron-doped diamond electrodes.  相似文献   

19.
In situ scanning tunneling microscopy (STM) was used to examine multilayer Hg film electrodeposited on a well-ordered Ir(1 1 1) single crystal electrode in 0.1 M HClO4 + 1 mM Hg(ClO4)2. Topography STM scans showed that the Ir(1 1 1) – supported Hg film electrode contained well-defined terraces separated by monatomic steps (Δz = 2.3 Å). The STM’s tip could be used to induce local dissolution of the Hg deposit under proper operating conditions and the depth of the etched pit informed directly the thickness of Hg deposit. Although in situ STM imaging with a tungsten tip could not result in atomic structure of bare Hg film in 0.1 M HClO4, it discerned highly ordered iodine adlayers, represented by a (2 × 8√3)rect – I structure, on the Hg film in solution containing potassium iodide. These STM results suggested that the Hg substrate could have an ordered atomic structure.  相似文献   

20.
This work points out that electrogeneration of silica gel (SG) films on glassy carbon electrodes (GCEs) can be applied to immobilize biomolecules – hemoglobin (Hb) or glucose oxidase (GOD) or both of them in mixture – without preventing their activity. These proteins were physically entrapped in the sol–gel material in the course of the electro-assisted deposition process applied to form the thin films onto the electrode surface. SG films were prepared from a precursor solution by applying a suitable cathodic potential likely to induce a local pH increase at the electrode/solution interface, accelerating thereby polycondensation of the silica precursors with concomitant film formation. Successful immobilization of proteins was checked by various physico-chemical techniques. Both Hb and GOD were found to undergo direct electron transfer, as demonstrated by cyclic voltammetry. GCE–SG–Hb gave rise to well-defined peaks at potentials Ec = −0.29 V and Ea = −0.17 V in acetate buffer, corresponding to the FeIII/FeII redox system of heme group of the protein, while GCE–SG–GOD was characterized by the typical signals of FAD group at Ec = −0.41 V and Ea = −0.33 V in phosphate buffer. These two redox processes were also evidenced on a single voltammogram when both Hb and GOD were present together in the same SG film. Hb entrapped in the silica thin film displayed an electrocatalytic behavior towards O2 and H2O2 in solution, respectively in the mM and μM concentration ranges. Immobilized GOD kept its biocatalytic properties towards glucose. Combined use of these two proteins in mixture has proven to be promising for detection of glucose in solution via the electrochemical monitoring of oxygen consumption (decrease of the oxygen electrocatalytic signal).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号