首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The third order nonlinear optical properties of the eight-β-octa-octyloxy-phthalocyanines in chloroform were investigated by Z-scan using ps laser at 532 nm. The excited state absorption cross section and the nonlinear refractive cross-section were determined. Eight-β-octa-octyloxy-phthalocyanine free base and eight-β-octa-octyloxy-nikle-phthalocyanine both posses large σes/σ0 ratio and positive σr, and the introduction of nikle ion reduces these values. Optical limiting performance was studied using multi-level model, the result shows that eight-β-octa-octyloxy-phthalocyanine free base has a much lower limiting threshold.  相似文献   

2.
Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10−9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].  相似文献   

3.
Third-order nonlinear-optical properties of gold nanoparticles embedded in Al2O3, ZnO and SiO2 have been investigated by the Z-scan method at the wavelength of 532 nm using nanosecond Nd3+:YAG laser radiation. The nonlinear refractive index, nonlinear absorption coefficient, and the real and imaginary parts of the third-order nonlinear susceptibility are deduced. The results of the investigation of nonlinear refraction using the off-axis Z-scan configuration are presented and the mechanisms responsible for the nonlinear response are discussed. The prevailing influence of the electronic Kerr effect over the possible thermo-optical contribution is demonstrated.  相似文献   

4.
The influence of thermal effect on the third-order nonlinear optical properties of binuclear Zn(II) phthalocyanine in chloroform solution was studied. The nonlinear refraction and absorption of the sample was measured by using Z-scan technique with 4 ns laser pulses at 532 nm wavelength. The opposite signs of the effective nonlinear refraction index were observed by changing the focal length of focusing lens from 10 cm to 20 cm in the experimental setup. Changing the focusing lens increased the beam waist radius from 7 μm to 20 μm. The nonlinear absorption coefficient was reduced about 200 times based on changing the fluence or beam waist radius. The drastic changes in the third-order nonlinear optical parameters were attributed to thermal effect. To investigate the role of thermal effects even further the effective nonlinear refraction and absorption coefficients were studied by using different repetition rates, input powers and concentrations.  相似文献   

5.
(Na1−xKx)0.5Bi0.5TiO3 (NKBT) (x = 0.1, 0.2, and 0.3) thin films with good surface morphology and rhombohedral perovskite structure were fabricated on quartz substrates by a sol-gel process. The fundamental optical constants (the band gaps, linear refractive indices and absorption coefficients) of the films were obtained through optical transmittance measurements. The nonlinear optical properties were investigated by Z-scan technique performed at 532 nm with a picosecond laser. A two-photon absorption effect closely related with potassium-doping content was found in thin films, and the nonlinear refractive index n2 increases evidently with potassium-doping. The real part of the third-order nonlinear susceptibility χ(3) is much larger than its imaginary part, indicating that the third-order optical nonlinear response of the NKBT films is dominated by the optical nonlinear refractive behavior. These results show that NKBT thin films have potential applications in nonlinear optics.  相似文献   

6.
Periodic Au nanoparticle arrays were fabricated on silica substrates using nanosphere lithography. The identical single-layer masks were prepared by self-assembly of polystyrene nanospheres with radius R = 350 nm. The structural characterization of nanosphere masks and periodic particle arrays was investigated by atomic force microscopy. The nonlinear optical properties of the Au nanoparticle arrays were determined using a single beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that periodic Au nanoparticle arrays exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 6.09 × 10−6 cm2/kW and β = −1.87 × 10−6 m/W, respectively.  相似文献   

7.
Using Z-scan method with picosecond laser at 532 nm, the third order optical nonlinearities of ZnFe2O4 were investigated. The nonlinear refractive index is positive for all ZnFe2O4 samples and decrease with the nanocrystal size. The nonlinear absorption dominated by saturable absorption for 19 nm and 11 nm ZnFe2O4 but by two photon absorption for 5 nm ZnFe2O4 organosol. Origin of the optical nonlinearities and the size effect has been discussed.  相似文献   

8.
The nonlinear optical nonlinearities of a fluorine-containing azoic dye in tetrahydrofuran have been investigated by using Z-scan technique with picosecond and nanosecond lasers. The experimental results reveal that the azoic dye has large optical nonlinearity under the excitations of picosecond and nanosecond 532 nm. At the picosecond 532 nm the solution presents negative nonlinear refraction due to the electronic effect, while the larger nonlinear refraction under nanosecond laser excitation is induced by thermal effect. Moreover, the different nonlinear absorption behavior under picosecond and nanosecond excitations is analyzed.  相似文献   

9.
Photophysical property and third-order optical nonlinearity of an azobenzene substituted zinc phthalocyanine (azo-ZnPc) in chloroform solution were studied by UV–Vis spectra method and a picosecond Z-scan technique at 532 nm with pulse duration of 25 ps, respectively. It was found that the azo-ZnPc shows large positive nonlinear refraction and positive nonlinear absorption, exhibiting the defocusing effect and reverse saturable absorption, respectively. The molecular second hyperpolarizability of the azo-ZnPc dyad was measured to be 3.9 × 10−30 esu. All the results suggest that the studied azo-ZnPc dyad may have potential applications in the field of nonlinear optics.  相似文献   

10.
Optical nonlinearities of Au nanoparticles embedded in zinc oxide (ZnO) matrix have been investigated by the Z-scan method at the wavelength of 532 nm using nanosecond Nd3+:YAG laser radiation. The nonlinear refractive index has been measured and the real part of the third-order nonlinear susceptibility is deduced. The results of the investigation of nonlinear refraction using the off-axis Z-scan configuration are presented and the mechanisms responsible for the nonlinear response are discussed. The nonlinear refraction is found to be negative (self-defocusing) in the vicinity of the surface plasmon resonance. Moreover, its strength is shown to be larger for materials having higher gold concentration. Finally, the prevailing influence of the electronic Kerr effect over the possible thermo-optical contribution is demonstrated.  相似文献   

11.
The method for measuring second-order nonlinear optical coefficients based on well-known Z-scan is presented. The influence of linear absorption coefficients on normalized transmittance is discussed. Using this method, we obtained the second-order nonlinear coefficient d31(5%MgO:LiNbO3) = 4.5 × 10−12 m/v at 1064 nm, which agrees well with theoretical calculations and previous well-known values.  相似文献   

12.
In this work we synthesized ZnS:Mn2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn2+ exhibited an orange-red emission at 594 nm due to the 4T1-6A1 transition in Mn2+. The PL intensity increased with increase in the Mn2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10−8 cm2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10−3 cm/W with positive sign.  相似文献   

13.
An investigation of third-order nonlinear optical characterization of newly synthesized conjugated benzodioxal derivatives has been done by using nanosecond Z-scan technique at 532 nm. The molecules demonstrate self-defocusing effect with intensity dependent refractive index (n2) of the order of 10−14 cm2/W. The measured molecular TPA cross-section is ranging from 2.47 ×10−47 cm4 s/photon to 6.00 cm4 s/photon. Their input-output curves indicate that there is a clear optical power limiting behavior with the limiting threshold in the range 125-181 μJ. The main factor to exhibit the observed nonlinearity in these molecules is the presence of charge donor and acceptor groups. The increased conjugation length increases the nonlinear refraction and increased electron density enhances the nonlinear absorption. The molecules exhibit good nonlinear optical properties, comparable to those of regular azoaromatic compounds. Therefore, the molecules investigated here are promising candidates for optical power limiting devices.  相似文献   

14.
Nonlinear absorption of carbon disulfide (CS2) was investigated by Z-scan technique and time-resolved pump-probe technique with femtosecond pulses at 400 nm wavelength. By the two techniques, we confirmed that the nonlinear absorption of CS2 arise from a combination of two-photon absorption (TPA) and the excited state absorption induced by TPA under the incident laser pulses with 400 nm wavelength. The coefficient of TPA, the absorption cross-section of low excited state and lifetime of low excited state were obtained by theoretical fitting the experimental results. The results indicated that the CS2 has good optical limiting capability at 400 nm wavelength.  相似文献   

15.
The third-order nonlinear optical properties of chalcone derivatives have been studied using the single beam Z-scan technique. The dependence of χ(3) on different donor and acceptor type substituents demonstrates the electronic nonlinearity of compounds. The largest value of nonlinear refractive index, n2, measured for a high electron donor substituted molecule is −2.033 × 10−11 esu. These molecules exhibit a strong two-photon absorption and interesting optical limiting of nanosecond laser pulses at 532 nm.  相似文献   

16.
The triangular-shaped Au/ZnO nanoparticle arrays were fabricated on fused quartz substrate using nanosphere lithography. The structural characterization of the Au/ZnO nanoparticle arrays was investigated by atomic force microscopy. The absorption peak due to the surface plasmon resonance of Au particles at the wavelength of about 570 nm was observed. The nonlinear optical properties of the nanoparticle arrays were measured using the z-scan method at a wavelength of 532 nm with pulse duration of 10 ns. The real and imaginary part of third-order nonlinear optical susceptibility, Re χ(3) and Im χ(3), were determined to be 1.15 × 10−6 and −5.36 × 10−7 esu, respectively. The results show that the Au/ZnO nanoparticle arrays have great potential for future optical devices.  相似文献   

17.
The molecular charge complex urea picrate (UP) was synthesized and its third order nonlinear optical properties have been investigated using a single beam Z-scan technique with nanosecond laser pulses at 532 nm. Open aperture data of the compound indicates two photon absorption at this wavelength. The nonlinear refractive index n2, nonlinear absorption coefficient β, magnitude of effective third order susceptibility χ(3), the second order hyperpolarizability γh and the coupling factor ρ have been estimated. The experimentally determined values of β, n2, Re χ(3) and Im χ(3), γh and ρ of the compound UP are 2.146 cm/GW, −1.258×10−11 esu, −1.347×10−13 esu, 0.377×10−13 esu, 0.69×10−32 esu and 0.28, respectively. The compound exhibits good optical limiting at 532 nm with the limiting threshold of 80 μJ/pulse. Our studies suggest that compound UP is a potential candidate for optical device applications such as optical limiters.  相似文献   

18.
The quest for materials exhibiting high nonlinear refraction and absorption are required for photonic device application. In this paper we report a simplified Z-scan technique, to study the optical nonlinearity of the dye bromocresol purple in methanol and ethanol for different concentration and dye doped polymer film at the wavelength 532 nm of Nd:YAG laser. The experimental results show that the investigated organic dye molecule exhibits saturation absorption and negative nonlinearity. The nonlinear absorption co-efficient and the nonlinear refractive index were measured for the dye doped film, and for dye in methanol and ethanol at the concentration of 0.03 mM and 0.05 mM. The measured third order susceptibility was found to be of the order of 10−6 e.s.u. in both solid and liquid medium. The result shows that the dye has potential applications in nonlinear optics.  相似文献   

19.
(Ba0.7Sr0.3)TiO3 (BST) ferroelectric thin films with perovskite crystal structure were fabricated by soft solution processing on a quartz substrate. The third-order nonlinear optical properties were investigated by using Z-scan technique. Positive nonlinear refractive index and nonlinear absorption coefficient were determined to be 4×10−7 esu and 1.2×10−6 m/w, respectively. The real part and imaginary part of third-order optical nonlinear susceptibility were calculated and the values were 6.43×10−8 and 5.14×10−8 esu, respectively. All of these results show ferroelectric BST thin film is promising for applications in nonlinear optical devices.  相似文献   

20.
The third-order nonlinear optical properties of polyurethane-urea/multiwalled carbon nanotube composites (PU/MWNT) films with different MWNT concentrations are investigated by the use of the Z-scan technique at a wavelength of 532 nm with a pulse duration of 8 ns. The results reveal that the nonlinear refraction and absorption coefficients are linearly dependent on the MWNT concentration. The negative nonlinear refraction effect is validated from the closed-aperture Z-scan measurements. We find that PU/MWNT films are promising nonlinear optical materials, and the nonlinear coefficients can be controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号