首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO films have been grown by a sol-gel process on Si (1 1 1) substrates with and without SiC buffer layers. The influence of SiC buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates was investigated. The intensity of the E2 (high) phonon peak in the micro-Raman spectrum of ZnO film with the SiC buffer layer is stronger than that of the sample without the SiC buffer layer, and the breadth of E2 (high) phonon peak of ZnO film with the SiC buffer layer is narrower than that of the sample without the SiC buffer layer. These results indicated that the crystalline quality of the sample with the SiC buffer layer is better than that of the sample without the SiC buffer layer. In photoluminescence spectra, the intensity of free exciton emission from ZnO films with the SiC buffer was much stronger than that from ZnO film without the SiC buffer layer, while the intensity of deep level emission from sample with the SiC buffer layer was about half of that of sample without the SiC buffer layer. The results indicate the SiC buffer layer improves optical qualities of ZnO films on Si (1 1 1) substrates.  相似文献   

2.
Raman scattering studies were performed on hot-wall chemical vapor deposited (heteroepitaxial) silicon carbide (SiC) films grown on Si substrates with orientations of (1 0 0), (1 1 1), (1 1 0) and (2 1 1), respectively. Raman spectra suggested that good quality cubic SiC single crystals could be obtained on the Si substrate, independent of its crystallographic orientation. Average residual stresses in the epitaxially grown 3C-SiC films were measured with the laser waist focused on the epilayer surface. Tensile and compressive residual stresses were found to be stored within the SiC film and in the Si substrate, respectively. The residual stress exhibited a marked dependence on the orientation of the substrate. The measured stresses were comparable to the thermal stress deduced from elastic deformation theory, which demonstrates that the large lattice mismatch between cubic SiC and Si is effectively relieved by initial carbonization. The confocal configuration of the optical probe enabled a stress evaluation along the cross-section of the sample, which showed maximum tensile stress magnitude at the SiC/Si interface from the SiC side, decreasing away from the interface in varied rate for different crystallographic orientations. Defocusing experiments were used to precisely characterize the geometry of the laser probe in 3C-SiC single crystal. Based on this knowledge, a theoretical convolution of the in-depth stress distribution could be obtained, which showed a satisfactory agreement with stress values obtained by experiments performed on the 3C-SiC surface.  相似文献   

3.
In this work, we study the effect of the thickness and porous structure of silicon carbide (PSC) layers on the electrical properties of Schottky photodiodes by using a palladium (Pd) layer deposited on non-porous silicon carbide (SiC) and porous-SiC (PSC) layers. The non-porous and porous-SiC layers were realized on a p-type silicon (Si(1 0 0)) substrate by pulsed laser deposition using a KrF laser (248 nm) and thermal deposition of a thin Pd layer. The porous structure of the SiC layer deposited was developed by an electrochemical (anodization) method. The electrical measurements were made at room temperature (295 K) in an air ambience. The effect of the porous surface structure and the thickness of the SiC layer were investigated by evaluating electrical parameters such as the ideality factor (n) and barrier height (?Bp). The thickness of the porous layer significantly affects the electrical properties of the Schottky photodiodes. Analysis of current-voltage (I-V) characteristics showed that the forward current might be described by a classical thermal emission theory. The ideality factor determined by the I-V characteristics was found to be dependent on the SiC thickness a value For a thin SiC layer (0.16 μm) n was around 1.325 with a barrier height 0.798 eV, while for a thick layer (1.6 μm), n and ?Bp were 1.026 and 0.890 eV, respectively for Pd/SiC-pSi. These results indicate Schottky photodiodes with high performance are obtained for thicker SiC layer and for thin layer of PSC. This effect showed the uniformity of the SiC layer. In the same case the ideality factor (n) decreases for Pd/PSC-pSi(1 0 0) for low SiC thickness by report of Pd/PSC-pSi(1 0 0) Schottky photodiodes, but for Pd/PSC-pSi(1 0 0) n increase for large SiC thickness layer. We notice that the barrier height (?Bp) was reversely depend by report of ideality factor. A spectral response value of (SR) of 34 mA/W at λ = 400 nm was measured for Pd/0.16 μm SiC-pSi Schottky photodiode with low SiC thickness. On the other hand, a value of SR = 0.14 mA/W at λ = 900 nm was obtained when we used PSC layer (Pd/PSC-pSi(1 0 0)). A reverse behaviour occurs for thicker SiC layer. Finally, it was found that the thickness and surface porous structure have strong effect on sensitivity.  相似文献   

4.
In this paper, photonic crystal (PhC) based on two dimensional (2D) square and hexagonal lattice periodic arrays of Silicon Carbide (SiC) rods in air structure have been investigated using plane wave expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength (λ = 1.55 μm) by varying the radius of the rods and lattice constant. The result obtained shows that a photonic band gap (PBG) exists for TE-mode propagation. First, the effect of temperature on the width of the photonic band gap in the 2D SiC PhC structure has been investigated and compared with Silicon (Si) PhC. Further, a cavity has been created in the proposed SiC PhC and carried out temperature resiliency study of the defect modes. The dispersion relation for the TE mode of a point defect A1 cavity for both SiC and Si PhC has been plotted. Quality factor (Q) for both these structures have been calculated using finite difference time domain (FDTD) method and found a maximum Q value of 224 for SiC and 213 for Si PhC cavity structures. These analyses are important for fabricating novel PhC cavity designs that may find application in temperature resilient devices.  相似文献   

5.
In this paper we report on the electrical and optical properties of amorphous carbon (a-C) and hydrogenated amorphous carbon (a-C:H) films. Resistivity of both types of films decreases with increase in temperature. At lower temperatures (60-250 K) the electron transport is due to variable range hopping for the a-C films. At higher temperatures (300-430 K) it is thermally activated for both types of films. Analysis of the heterojunction between diamond-like carbon (DLC) and bulk silicon (Si) leads to the conclusion that our a-C films are of n-type and our a-C:H films are of p-type. The optical measurements with DLC revealed a Tauc bandgap of 0.6 eV for the a-C films and 1-1.2 eV for the a-C:H films. An Urbach energy around 170 meV could be determined for the a-C:H films. Strain versus resistance plots were measured resulting in piezoresistive gauge factors around 50 for the a-C films and in between 100 and 1200 for the a-C:H films.  相似文献   

6.
A compact and two-dimensional atomic force microscope (AFM) using an orthogonal sample scanner, a calibrated homodyne laser interferometer and a commercial AFM head was developed for use in the nano-metrology field. The x and y position of the sample with respect to the tip are acquired by using the laser interferometer in the open-loop state, when each z data point of the AFM head is taken. The sample scanner, which has a motion amplifying mechanism was designed to move a sample up to 100 μm × 100 μm in orthogonal way, which means less crosstalk between axes. Moreover, the rotational errors between axes are measured to ensure the accuracy of the calibrated AFM within the full scanning range. The conventional homodyne laser interferometer was used to measure the x and y displacements of the sample and compensated via an X-ray interferometer to reduce the nonlinearity of the optical interferometer. The repeatability of the calibrated AFM was measured to sub-nanometers within a few hundred nanometers scanning range.  相似文献   

7.
Pulsed UV laser drilling can be applied to fabricate vertical electrical interconnects (vias) for AlGaN/GaN high electron mobility transistor devices on single-crystalline silicon carbide (SiC) substrate. Through-wafer micro holes with a diameter of 50-100 μm were formed in 400 μm thick bulk 4H-SiC by a frequency-tripled solid-state laser (355 nm) with a pulse width of ≤30 ns and a focal spot size of ∼15 μm. The impact of laser machining on the material system in the vicinity of micro holes was investigated by means of micro-Raman spectroscopy and transmission electron microscopy. After removing the loosely deposited debris by etching in buffered hydrofluoric acid, a layer of <4 μm resolidified material remains at the side walls of the holes. The thickness of the resolidified layer depends on the vertical distance to the hole entry as observed by scanning electron microscopy. Micro-Raman spectra indicate a change of internal strain due to laser drilling and evidence the formation of nanocrystalline silicon (Si). Microstructure analysis of the vias’ side walls using cross sectional TEM reveals altered degree of crystallinity in SiC. Layers of heavily disturbed SiC, and nanocrystalline Si are formed by laser irradiation. The layers are separated by 50-100 nm thick interface regions. No evidence of extended defects, micro cracking or crystal damage was found beneath the resolidified layer. The precision of UV laser micro ablation of SiC using nanosecond pulses is not limited by laser-induced extended crystal defects.  相似文献   

8.
In this work, 0.30 μm thick LiNbO3 layers have been deposited by sputtering on nanocrystalline diamond/Si and platinised Si substrates. The films were then analyzed in terms of their structural and optical properties. Crystalline orientations along the (0 1 2), (1 0 4) and (1 1 0) axes have been detected after thermal treatment at 500 °C in air. The films were near-stoichiometric and did not reveal strong losses or diffusion in lithium during deposition or after thermal annealing. Pronounced decrease of the roughness on top of the LiNbO3 layer and at the interface between LiNbO3 and diamond was also observed after annealing, compared to the bare nanocrystalline diamond on Si substrate. Furthermore, ellipsometry analysis showed a better density and a reduced thickness of the surface layer after post-deposition annealing. The dielectric constant and losses have been measured to 50 and less than 3.5%, respectively, for metal/insulator/metal structures with 0.30 μm thick LiNbO3 layer. The piezoelectric coefficient d33 was found to be 7.1 pm/V. Finally, we succeeded in switching local domain under various positive and negative voltages.  相似文献   

9.
A multilayered Si nanocrystal-doped SiO2/Si (or Si-nc:SiO2/Si) sample structure is studied to acquire strong photoluminescence (PL) emission of Si via modulating excess Si concentration. The Si-nc:SiO2 results from SiO thin film after thermal annealing. The total thickness of SiO layer remains 150 nm, and is partitioned equally into a number of sublayers (N = 3, 5, 10, or 30) by Si interlayers. For each N-layered sample, a maximal PL intensity of Si can be obtained via optimizing the thickness of Si interlayer (or dSi). This maximal PL intensity varies with N, but the ratio of Si to O is nearly a constant. The brightest sample is found to be that of N = 10 and dSi = 1 nm, whose PL intensity is ∼5 times that of N = 1 without additional Si doping, and ∼2.5 times that of Si-nc:SiO2 prepared by co-evaporating of SiO and Si at the same optimized ratio of Si to O. Discussions are made based on PL, TEM, EDX and reflectance measurements.  相似文献   

10.
Optical contacting is a powerful tool for assembling solid-spaced filters in order to form a wavelength division multiplexing (WDM) multiple-cavity filter. In this article, we propose a method able to characterize the optical quality of such assembling with a high accuracy. We use localized spectral transmittance measurements to map the thickness of the residual air gap existing at the adhesion interface with a few nanometers precision. Tests on thick (2 mm) and thin (100 μm) substrates coated by Dual Ion Beam Sputtering are performed. Thus, we show that our 25 mm-diameter samples are strictly contacted over more than 80% of their surface, with no detectable residual air gap.  相似文献   

11.
The magnetic Compton profiles (MCPs) of Fe thin film with 1 μm thickness have been successfully measured, using polyethylene terephtalate (PET) substrates with 4 μm thickness to reduce scattering photons from substrate.We have succeeded for the first time to observe the anisotropy of MCPs in the Co/Pd multilayer. The magnetic out-of-plane anisotropy of the current Co (0.8 nm)/Pd (1.6 nm) multilayer sample can be explained by the model of a large number of the |m|=1 states of 3d-bands.  相似文献   

12.
We present a spectral interferometric method to measure the thickness of an optical plate or a film with a single layer. The system is based on the Michelson interferometer configuration, and the spectral interference signal of a broadband light source is recorded by a spectrometer. The optical path difference (OPD) between two interfering beams can be obtained by Fourier transform from the spectral interferogram. Gaussian fitting is used to find the exact peak of fringe to enhance the precision of the measurements. When the sample is inserted into the sample beam, the film’s thickness can be calculated by comparing the change of OPD, provided that the sample group refractive index is known. Only a single measurement is needed to determine a film’s thickness after the initial OPD of the system is calibrated. As no moving parts are required, the system has good stability. In particular, a large range of thicknesses, from micrometers up to several millimeters, can be measured. Such a large range is valuable for optical measurements. For demonstration, we measured the thicknesses of preservative film, cover glass and carrier glass, which were 9.6 ± 0.55, 156.1 ± 0.75, 1008.44 ± 0.96 μm, respectively.  相似文献   

13.
Silicon-incorporated diamond-like carbon (Si-DLC) films were deposited via dc plasma-enhanced chemical vapor deposition (PECVD), on glass and alumina substrates at a substrate temperature 300 °C. The precursor gas used was acetylene and for Si incorporation, tetraethyl orthosilicate dissolved in methanol was used. Si atomic percentage in the films was varied from 0% to 19.3% as measured from energy-dispersive X-ray analysis (EDX). The binding energies of C 1s, Si 2s and Si 2p were determined from X-ray photoelectron spectroscopic studies. We have observed low-macroscopic field electron emission from Si-DLC thin films deposited on glass substrates. The emission properties have been studied for a fixed anode-sample separation of 80 μm for different Si atomic percentages in the films. The turn-on field was also found to vary from 16.19 to 3.61 V/μm for a fixed anode-sample separation of 80 μm with a variation of silicon atomic percentage in the films 0% to 19.3%. The turn-on field and approximate work function are calculated and we have tried to explain the emission mechanism there from. It was found that the turn-on field and effective emission barrier were reduced by Si incorporation than undoped DLC.  相似文献   

14.
The growth of 3C-SiC on Si(1 1 1) substrate was performed at different carbonization temperatures and substrate temperatures by solid-source molecular beam epitaxy (SSMBE). The properties of SiC film were analyzed with in situ reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The best carbonization temperature of 810 °C was found to be optimal for the surface carbonization. The quality of SiC film grown on Si at substrate temperature of 1000 °C is best. The worse crystalline quality for the sample grown at higher temperature was attributed to the large mismatch of thermal expansion coefficient between SiC and Si which caused more dislocation when sample was cooled down to room temperature from higher substrate temperature. Furthermore, the larger size of single pit and the total area of the pits make the quality of SiC films grown at higher temperature worse. More Si atoms for the sample grown at lower temperature were responsible for the degradation of crystalline quality for the sample grown at lower temperature.  相似文献   

15.
Stress-induced birefringence impacts the performance of many optical devices. Techniques are needed to measure accurately stress profiles in optical fibers. The two-waveplate-compensator (TWC) method allows the accurate measurement of small retardations. The full-field TWC method is applied here to measure the two-dimensional retardation distribution of single-mode fibers with a spatial resolution of 0.45 μm and a sensitivity of 0.07 nm. Axial stress profiles are hence determined along the axis of the fiber. The stress profiles determined with the TWC method are in good agreement with profiles previously reported in the literature while containing less noise and resolving more details.  相似文献   

16.
The feasibility of a microstructured optical fiber (MOF) amplifier, made of a novel Er3+-doped chalcogenide glass, has been demonstrated via accurate simulations performed by employing an oppositely implemented computer code. The optical and geometrical parameters measured on the first MOF sample together with other physical constants from literature have been taken into account in the simulations. The calculated optical gain of the optimized MOF amplifier, 2.79 m long, is close to 23 dB at the signal wavelength of 1.538 μm, by using a pump power of 200 mW and a signal power of 0.1 μW.  相似文献   

17.
The SiC films were grown by solid source molecular beam epitaxy (SSMBE) on Si (1 1 1) with different amounts of Ge predeposited on Si prior to the epitaxial growth of SiC. The samples were investigated with reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), and X-ray diffraction (XRD). The results indicate that there is an optimized Ge predeposition amount of 0.2 nm. The optimized Ge predeposition suppress the Si outdiffusion and reduce the formation of voids. For the sample without Ge predeposition, the Si outdiffusion can be observed in RHEED and the results of XRD show the worse quality of SiC film. For the sample with excess amount of Ge predeposition, the excess Ge can increase the roughness of the surface which induces the poor quality of the SiC film.  相似文献   

18.
Silicon carbide (SiC) films were synthesized by combined metal vapor vacuum arc (MEVVA) ion implantation with ion beam assisted deposition (IBAD) techniques. Carbon ions with 40 keV energy were implanted into Si(1 0 0) substrates at ion fluence of 5 × 1016 ions/cm2. Then silicon and carbon atoms were co-sputtered on the Si(1 0 0) substrate surface, at the same time the samples underwent assistant Ar-ion irradiation at 20 keV energy. A group of samples with substrate temperatures ranging from 400 to 600 °C were used to analyze the effect of temperature on formation of the SiC film. Influence of the assistant Ar-ion irradiation was also investigated. The structure, morphology and mechanical properties of the deposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and nanoindentation, respectively. The bond configurations were obtained from IR absorption and Raman spectroscopy. The experimental results indicate that microcrystalline SiC films were synthesized at 600 °C. The substrate temperature and assistant Ar-ion irradiation played a key role in the process. The assistant Ar-ion irradiation also helps increasing the nanohardness and bulk modulus of the SiC films. The best values of nanohardness and bulk modulus were 24.1 and 282.6 GPa, respectively.  相似文献   

19.
We demonstrate that in addition to their role in tuning the wavelength of an N-stage hybrid liquid-crystal Šolc filter, liquid-crystal cells can also be used to vary the transmission bandwidth of such filter around any of the tuned wavelength. This bandwidth tuning is based on the variation of the number of stages by what we call here an “optical cancelling technique”. This is achieved by varying the birefringence of the liquid-crystal cells whose optical path difference switches between two particular values. We show that for a 10-stage filter and at λi = 1.532 μm, the calculated 3-dB bandwidth varies from 2.6 to 11.8 nm when the number of “optically-cancelled” hybrid plates increases from 0 to 8. During the tuning process, the contrast ratio remains equal to that of the equivalent classical Šolc filter.  相似文献   

20.
Silicon carbide (SiC) is a candidate material for electronic devices to operate upon crucial environment. Electronic states of silicides and/or carbide/graphite formed in metal/SiC contact system are fundamentally important from the viewpoint of device performance.We study interface electronic structure of iron thin film deposited on silicon (Si)- and carbon (C)-face of 4H-SiC(0 0 0 1) by using a soft X-ray emission spectroscopy (SXES). For specimens of Fe (50 nm)/4H-SiC (substrate) contact systems annealed at 700 and 900 °C, the Si L2,3 emission spectra indicate different shapes and peak energies from the substrate depending on thermal-treated temperature. The product of materials such as silicides is suggested. Further, from comparison of Si L2,3 emission spectra between Si- and C-face for the same annealing temperature at 700 °C, it is concluded that the similar silicides and/or ternary materials are formed on the two surfaces. However for those of 900 °C, the film on substrate is composed of the different silicide and/or ternary materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号