首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
The lattice vibrational spectrum of a single crystal of CdIn2S4 has been recorded at low temperature (4.2 K) by using Fourier transform spectroscopy. The absorption line corresponding to the T1u IR active mode has been studied in detail. It has been observed that this line is split into two closely spaced lines located at 69.9 and 71.1 cm?1. This splitting is explained on the basis of the existence of a partially inverse spinel structure.  相似文献   

2.
The vibrational spectrum of a cadmium impurity atom in the HgTe crystal has been calculated using the microscopic theory of lattice dynamics in the approximation of a low impurity concentration. Within this theory, the behavior of the local and quasi-local modes induced upon substitution of the lighter Cd atom for the Hg atom in the region of the zero or very low one-phonon density of states in the HgTe crystal has been considered. It has been found that, apart from the local mode at a frequency of 155 cm?1, the calculated vibrational spectra exhibit a weak (but clearly pronounced) feature at a frequency of 134 cm?1, which coincides with the experimentally observed vibrational mode (the “minicluster” mode) at a frequency of 135 cm?1 in the Hg1 ? x Cd x Te (x = 0.2–0.3) alloys at 80 K.  相似文献   

3.
The absorption spectrum of H2S has been recorded by intracavity laser absorption spectroscopy in the spectral region 16 180–16 440 cm−1 corresponding to an excitation of the (70±, 0) local mode pair. Seventy-seven sublevels could be rotationally assigned and fitted with a rms of 0.009 cm−1 by considering the (70±, 0) local mode pair as isolated. The corresponding vibrational terms combined with all the levels reported in the literature were used to refine the effective vibrational Hamiltonian parameters of H232S. The importance of the Fermi-type interaction is discussed.  相似文献   

4.
This paper reports on the use of phonon spectra obtained with laser Raman spectroscopy for the uncertainty concerned to the optical phonon modes in pure and composite ZnO1?x (Cr2O3) x . Particularly, in previous literature, the two modes at 514 and 640 cm?1 have been assigned to ZnO are not found for pure ZnO in our present study. The systems investigated for the typical behavior of phonon modes with 442 nm as excitation wavelength are the representative semiconductor (ZnO)1?x (Cr2O3) x (x = 0, 5, 10 and 15 %). Room temperature Raman spectroscopy has been demonstrated polycrystalline wurtzite structure of ZnO with no structural transition from wurtzite to cubic with Cr2O3. The incorporation of Cr3+ at most likely on the Zn sub-lattice sites is confirmed. The uncertainty of complex phonon bands is explained by disorder-activated Raman scattering due to the relaxation of Raman selection rules produced by the breakdown of translational symmetry of the crystal lattice and dopant material. The energy of the E 2 (high) peak located at energy 53.90 meV (435 cm?1) due to phonon–phonon anharmonic interaction increases to 54.55 meV (441 cm?1). A clear picture of the dopant-induced phonon modes along with the B 1 silent mode of ZnO is presented and has been explained explicitly. Moreover, anharmonic line width and effect of dislocation density on these phonon modes have also been illustrated for the system. The study will have a significant impact on the application where thermal conductivity and electrical properties of the materials are more pronounced.  相似文献   

5.
The CF2 emission spectrum in rare gas solids involves both the symmetric vibrations, ν2 (668 cm?1) and ν1 (1120 cm?1). A vibrationally unrelaxed emission is observed following selective excitation of the higher vibrational levels in the ν2 manifold, and we measure vibrational relaxation rates of 2 × 108/sec and 1.1 × 108/sec, respectively, for the 2-1 and 1-0 relaxation in argon. All the vibrational bands show a strong coupling to the lattice modes, with a weak ZPL and strong phonon wing. This results from the change in geometry between the ground and excited electronic states.  相似文献   

6.
Luminescence spectra of ivory zirconia (Zr02) excited by an argon-ion laser (19,436–21,839 cm?1) reveal a complex pattern consisting of both sharp and diffuse peaks in the 16,000–19,000 cm?1 region. The intensity behavior of these features depends markedly on the excitation frequency. The sharp luminescence peaks of the 18,140–18,600 cm?1 region are attributed to phonon-mediated de-excitation of excited states of the impuriity-doped ZrO2 lattice. The more diffuse luminescence bands of the 17,700–18,000cm?1 region may be associated with the electron traps observed in glow experiments and/or with higher-order phonon processes.  相似文献   

7.
The phonon modes of self-assembled Ge/Si quantum dots grown by molecular-beam epitaxy in an apparatus integrated with a chamber of the scanning tunneling microscope into a single high-vacuum system are investigated using Raman spectroscopy. It is revealed that the Ge-Ge and Si-Ge vibrational modes are considerably enhanced upon excitation of excitons between the valence band Λ3 and the conduction band Λ1 (the E 1 and E 1 + Δ1 transitions). This makes it possible to observe the Raman spectrum of very small amounts of germanium, such as one layer of quantum dots with a germanium layer thickness of ≈10 Å. The enhancement of these modes suggests a strong electron-phonon interaction of the vibrational modes with the E 1 and E 1 + Δ1 excitons in the quantum dot. It is demonstrated that the frequency of the Ge-Ge mode decreases by 10 cm?1 with a decrease in the thickness of the Ge layer from 10 to 6 Å due to the spatial-confinement effect. The optimum thickness of the Ge layer for which the size dispersion of quantum dots is minimum is determined.  相似文献   

8.
Reflection and transmission infrared spectra of BiFeO3 ceramic samples have been measured using submillimeter spectroscopy (on a backward-wave tube spectrometer) and Fourier-transform infrared spectroscopy in the frequency range from 5 to 1000 cm−1 at temperatures in the range from 10 to 500 K. New resonant modes (probably, magnetic in nature) with the eigenfrequencies decreasing with an increase in the temperature have been recorded in the range 10–30 cm−1 by IR spectroscopy for the first time. An additional absorption with a fairly large dielectric contribution has been revealed in the range 30–60 cm−1. It has been demonstrated that the corresponding oscillators couple with both the lowest frequency phonon mode and the magnetic subsystem.  相似文献   

9.
We have measured the reflectivity from 20–240cm?1 of HgTe samples at 80 K and below as a function of hydrostatic pressure to 8 kbars. The transverse optical phonon frequency was determined from a Kramers-Kronig analysis of the data. For three samples of different doping levels we find TO/dp = 0.34 cm?1 kbar?1. The Gruneissen's parameter, γ = 1.2, is typical of values for zincblende crystals indicating that the phonon is not influenced by the narrow gap and inverted band structure. The defect oscillator at 107 cm?1 is observed to be independent of pressure. This appears inconsistent with its identification as a phonon difference mode.  相似文献   

10.
Reflection absorption infrared spectroscopy (RAIRS) and high resolution electron energy loss spectroscopy (HREELS) have been used to study the adsorption of oxygen on the (100) and (111) surfaces of lanthanum hexaboride. Exposure of the surface at temperatures of 95 K and above to O2 produces atomic oxygen on the surface and yields vibrational peaks in good agreement with those observed in previous HREELS studies. On the La-terminated (100) surface, RAIRS peaks correspond to vibrations of the boron lattice that gain intensity due to a decrease in screening of surface dipoles that accompanies oxygen adsorption. A sharp peak at ~ 734 cm?1 in the HREEL spectrum shows isotopic splitting with RAIRS into two components at 717 and 740 cm?1 with full widths at half maxima of only 12 cm?1. The sharpness of this mode is consistent with its interpretation as a surface phonon that is well separated from both the bulk phonons and other surface phonons of LaB6. On the boron-terminated LaB6(111) surface, broad and weak features are assigned to both vibrations of the boron lattice and of boron oxide. On the (100) surface, oxygen blocks the adsorption sites for CO, and adsorbed CO prevents the dissociative adsorption of O2.  相似文献   

11.
The ν3, ν4, and ν6 bands of thioformaldehyde, H2CS, have been studied using the technique of laser Stark spectroscopy. The H2CS was produced by the pyrolysis of dimethyl disulfide, and the spectrum was observed using a multipass absorption cell. The band origins are ν3, 1059.2037 cm?1; ν4, 990.1866 cm?1; and ν6, 991.0149 cm?1. The band previously assigned as 2ν6 has been reassigned as 2ν2, leading to a value of the ν2 band origin of ca. 1439 cm?1. Rotational constants and dipole moments of the vibrational states have been determined.  相似文献   

12.
The fluorescence excitation spectra of jet-cooled carbazole molecules at vibrational temperatures of 55 and 80 K and the fluorescence spectrum of these molecules excited by radiation at the frequency of a pure electronic transition are measured. As the vibrational temperature increases, the excitation spectra exhibit a series of lines of the same symmetry, which are caused by the interaction of the active vibration with a subensemble of optically inactive vibrations. The final symmetry of the totally and nontotally symmetric vibrations is determined from the shape of the rotational contours of the lines of vibronic transitions. The values of a decrease in the frequency of the nontotally symmetric vibrations in the first excited electronic state S 1 due to their interaction with the electronic state S 2 are calculated to be up to 100 cm?1. The frequencies of the pure electronic transitions in the absorption and fluorescence spectra coincide with each other and are equal to 30809 cm?1, the frequencies of vibrations in the ground state S 0 exceeding the frequencies of the corresponding vibrations in the excited state S 1. The degree of polarization of the integral fluorescence is determined for a series of vibronic transitions of the a 1 and b 2 final symmetry that are observed in the fluorescence excitation spectra, and the contribution of the intensity with the borrowed polarization θ to the integral fluorescence is calculated. It is found that the intensity θ is higher for the transitions of the b 2 symmetry and can reach ≈50%.  相似文献   

13.
Optical feedback cavity-enhanced absorption spectroscopy (OF CEAS) has been demonstrated with a thermoelectrically cooled continuous wave distributed feedback quantum cascade laser (QCL) operating at wavelengths around 7.84 μm. The QCL is coupled to an optical cavity which creates an absorption pathlength greater than 1000 m. The experimental design allows optical feedback of infra-red light, resonant within the cavity, to the QCL, which initiates self-locking at each TEM00 cavity mode frequency excited. The QCL linewidth is narrowed to below the mode linewidth, greatly increasing the efficiency of injection of light into the cavity. At the frequency of each longitudinal cavity mode, the absorption coefficient of an intracavity sample is obtained from the transmission at the mode maximum, measured with a thermoelectrically cooled detector: spectral line profiles of CH4 and N2O in ambient air were recorded simultaneously and with a resolution of 0.01386 cm?1. A minimum detectable absorption coefficient of 5.5×10?8 cm?1 was demonstrated after an averaging time of 1 s for this completely thermoelectrically cooled system. The bandwidth-normalised limit for a single cavity mode is 5.6×10?9 cm?1?Hz?1/2 (1σ).  相似文献   

14.
The terahertz-subterahertz spectra of the complex permittivity and dynamic conductivity of polycrystalline (TMTSF)2ClO4 and (TMTSF)2PF6 samples are measured quantitatively. The spectra of (TMTSF)2ClO4 have absorption lines at frequencies of 7 and 30 cm?1. The obtained temperature dependences of the line parameters in the range 5–300 K cast some doubt on the earlier concept of their phonon origin. An excitation is detected at temperatures below 20 K in the frequency range near 30 cm?1, and its nature is related to the activation of a transverse acoustic phonon caused by the folding of the Brillouin zone due to the ordering of noncentrosymmetrical anions below 20 K. An increase in the carrier relaxation rate is found in this temperature range, which indicates a close relation between the electron and phonon subsystems in (TMTSF)2ClO4. Sings of additional low-energy excitations that should manifest themselves at frequencies below 1–2 cm?1 are detected. (TMTSF)2PF6 containing centrosymmetrical anions has no absorption lines in the frequency range 3–20 cm?1 and the temperature range 5–300 K.  相似文献   

15.
The Raman and infrared active long wavelength phonons of a GaS single crystal were studied at different temperatures in the 10–600 cm?1 range. Properly polarized Raman spectra could be obtained with the 4880 Å exciting line and the previous assignment of the E1g modes controversed recently could be confirmed. Infrared spectra were recorded in the 30–600 cm?1 region. The vibrational frequencies of the crystal were also calculated using a method developed by Wieting and six new frequencies corresponding to infrared and Raman inactive modes have been proposed.We have observed that the degree of leakage of scattered intensity in unallowed polarizations increases when the wavelength of the exciting line moves off the exciton absorption front. The phonon at 74 cm?1 was particularly sensitive and the question of the antiresonant behaviour of this compound is raised.  相似文献   

16.
The absorption spectrum of methyl cyanide (CH3CN) has been measured in the near IR between 6000 and 8000 cm?1 with a resolution of 0.12 cm?1 using Fourier transform incoherent broadband cavity-enhanced absorption spectroscopy. The spectrum contains several weakly perturbed spectral regions; potential vibrational combination bands contributing to the spectrum are outlined. Line positions and cross-sections of CH3CN between 6814 and 7067 cm?1 have been measured at high-resolution of 0.001 cm?1 using diode laser based off-axis cavity-enhanced absorption spectroscopy. A total of 4630 new absorption lines of CH3CN are identified in this region. A value for the self-broadening coefficient has determined to be (3.3±0.2)×10?3 cm?1 mbar?1 for one isolated line at 7034.171 cm?1. Several line series have been identified in these regions and an autocorrelation analysis performed with a view to aiding future assignments of the rotational-vibrational transitions.  相似文献   

17.
The variation in the parameters (width, position, intensity) of the fine structure lines in the C[6 A 1g 4 A 1g , 4 E g(4 G)] and E[6 A 1g 4 E g(4 D)] bands in RbMnF3 with temperature is studied in the temperature range 10–70 K. In the C band, two narrow (<6 cm?1) lines are are distinguished at distances of 77 and 80 cm?1 from the exciton line at T = 10 K. The other lines in the C band and all lines in the E band are more than 20 cm?1 wide. It is demonstrated that the narrow lines become allowed because of the spin-exchange interaction within a long-range magnetic order model and originate from the excitation of exciton-magnon bound states and that the other lines are made allowed by the exchange-vibronic mechanism within a short-range magnetic order model and originate from the excitation of bound states composed of an exciton, magnon, and oddparity phonon. The vibrational replicas of the main exciton-magnon-phonon lines are due to the quadratic vibronic interaction with odd-parity vibrations. Variations of the intensities and widths of the absorption lines with temperature indicate that these parameters are affected by relaxation and delocalization of the bound states.  相似文献   

18.
The vibrational spectrum of CF3Br with the natural abundance ratio of isotopologues is studied in solutions in liquid Ar at T = 90 K in the frequency range 4000–400 cm?1 with a resolution of 0.1 cm?1 for the concentration range 3.1 × 10?7?6.3 × 10?3 mol %. The parameters of the vibrational spectrum of the molecule are determined: the frequencies are measured accurate to ± 0.1 cm?1, and the transition probabilities are found up to the fourth order inclusive. One hundred fifty absorption bands of CF3Br are interpreted, including the bands belonging to all the isotope modifications of this compound; the halfwidths of these bands are determined. For all the fundamental frequencies, the isotope shifts are obtained. Vibrational ?-resonance is studied. Using the experimental data obtained and taking into account this resonance, a complete set of parameters describing the experimental frequencies with the error δ ≈ 0.3 cm?1 was found. This set consists of 6 harmonic frequencies and 30 anharmonicity constants, including the constants r ik related to vibrational ?-resonances.  相似文献   

19.
Polarized Raman and infrared spectra of the one dimensional (1-D) superionic conductor (K2xMgxTi(8?x)O16; x = 0.77) have been measured over the phonon frequency region 10–1000 cm?1 as a function of temperature and pressure. The majority of the IR and Raman active modes predicted by group theory for the (Ti, Mg)O6 framework were observed. The frequencies and their IR and Raman scattering cross-sections for the incommensurate lattice of K+ ions were calculated using a one dimensional linear chain model. This model assumes Coulomb interaction between nearest neighbors that are located in a sinusoidal potential due to the framework lattice. Several broad Raman bands were attributed to amplitudon type modes from the one dimensional incommensurate K+ ion sublattice. The IR active phason modes could not be identified unambiguously due to the underlying TiO framework vibrations which are known to possess large anharmonicity and oscillator strenghts.  相似文献   

20.
The rotational structure of the vibrational bands of 12C2H2 is investigated in three spectral energy regions not previously systematically explored at high resolution, 12800–13500 cm?1, 14000–15200 cm?1 and 16500–18360 cm?1, on the basis of new spectral data recorded by intracavity laser absorption spectroscopy. The rotational analysis of 17 new absorption bands arising from the ground state is reported (11 Σu + ? Σg + bands and 6Πu ? Σg + bands). Four bands in the range studied show strong perturbations affecting both the line positions and intensities. Their detailed analysis is performed in order to determine the nature of the coupling schemes, the vibrational species and the rotational constants of the perturber states. Altogether, the vibration-rotation parameters of 21 newly observed vibrational states are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号