首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic analyses were made for the seed polymerization of tetraethyl orthosilicate (TEOS) in the presence of colloidal silica sphere seeds by turbidity and dynamic light scattering (DLS) measurements. Transmission electron microscopy (TEM) of the spheres formed was also used. TEOS is polymerized exclusively on the surfaces of the seed spheres, their sizes ranging from 29 to 184 nm in diameter. The sphere size versus time and the cube root of the absorbance versus time from DLS and turbidity measurements agree well, especially in the beginning of the reaction. The seed polymerization starts immediately on the addition of seed spheres, though the polymerization in the absence of the seeds proceeds after a certain induction time ranging several tens of seconds to several minutes. The polymerization rates of the reaction increase when the size and/or the concentration of the seed spheres increases. The thickness of the TEOS layers formed on the seed surfaces increases as the seed size increases; this is confirmed by the TEM pictures. These results are consistent with the polymerization mechanism of the formation of small preliminary particles followed by their coalescence on the surfaces of seeds to the final large spheres coated with silica layers. Received: 25 January 2001 Accepted: 30 May 2001  相似文献   

2.
An in‐depth study on the kinetics of the cationic emulsion polymerization of styrene in a batch reactor is presented. This study is focused on the effect of the amount of the cationic surfactant dodecyltrimethylammonium bromide (DTAB), using two different cationic initiators: 2,2′‐azobisisobutyramidine dihydrochloride (AIBA), 2,2′‐azobis (N,N′‐dimethyleneisobutyramidine) dihydrochloride (ADIBA), on kinetics and colloidal features such as conversion, number of particles, number average of radicals per particle, mean particle diameter, and particle size distribution (PSD) of the polystyrene latices obtained by emulsion polymerization in a batch reactor. Furthermore, the results of the cationic emulsion polymerization were compared with its homologous anionic case. Using DTAB as cationic surfactant an expected increase in the total rate of polymerization was observed when the DTAB concentration increased. However, the total number of particles increased much more than in the anionic system. On the other hand, a dependence on the particle size of the rate of polymerization per particle together with the average number of radicals per particle was found. These differences between cationic and anionic emulsion polymerizations were explained taking into account the limited particle coagulation observed with cationic surfactants, and the high rate of radical formation of cationic initiators. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4461–4478, 2006  相似文献   

3.
This article presents a facile, effective, mild synthesis process for well‐defined hollow spheres by using cationic polystyrene (PS) submicro‐particles as templates. In this approach, the cationic PS templates can be first prepared via emulsifier‐free polymerization by using the cationic monomer 2‐(methacryloyloxy) ethyltrimethylammonium chloride as comonomer, then, the silica shells from the sol‐gel process of tetraethoxysilane were coated on the surfaces of template particles via electrostatic interaction, finally the PS was dissolved in situ by modification of the reaction conditions in the same medium to form monodisperse hollow silica spheres with controlled shell thickness. Fourier transform‐infrared spectroscopy, thermogravimetric analysis, Brunauer‐Emmett‐Teller, transmission electron microscopy, and scanning electron microscope measurements were used to characterize these hollow silica spheres. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1332–1338, 2010  相似文献   

4.
1H NMR chemical shifts of the protons in the vinyl groups of monomers are correlated with their reactivities in anionic, coordinated anionic, and cationic polymerizations. The relative reactivities of styrenes in anionic addition reactions with living polystyrene increase linearly with the chemical shift of the proton trans to the substituent (δH1). Only the plot for 2,4,6-trimethylstyrene deviates very much from the linear relation because of the large steric hindrance. The relative reactivities of methacrylates in anionic copolymerizations increase with increasing chemical shifts of protons attached to the β-carbon of methacrylates. In cationic polymerizations of styrenes, the relative reactivities decrease with increasing δH1. The relative reactivities in coordinated anionic polymerizations with Ti-containing Ziegler initiators show a typical feature of cationic polymerization, and those with V-containing initiators show a typical feature of anionic polymerization, indicating the importance of the coordination process in the propagation reaction with Ti-containing initiator systems. From the results, it can be concluded that the chemical shifts of the protons attached to the β-carbon of vinyl monomers can be used as a practical measure of the reactivity of vinyl monomers in ionic polymerizations and also as a tool for understanding the mechanism of polymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2134–2147, 2002  相似文献   

5.
This article presents a novel route to prepare hollow silica microspheres with well-defined wall thickness by using cross-linked polystyrene (PS) microspheres as templates with the assistance of supercritical carbon dioxide (SC-CO2). In this approach, the cross-linked PS templates can be firstly prepared via emulsifier-free polymerization method by using ethylene glycol dimethacrylate or divinylbenzene as cross-linkers. Then, the silica shell from the sol–gel process of tetraethyl orthosilicate (TEOS) which was penetrated into the PS template with the assistance of SC-CO2 was obtained. Finally, the hollow silica spheres were generated after calcinations at 600 °C for 4 h. The shell thickness of the hollow silica spheres could be finely tuned not only by adjusting the TEOS/PS ratio, which is the most frequently used method, but also by changing the pressure and aging time of the SC-CO2 treatment. Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscope were used to characterize these hollow silica spheres.  相似文献   

6.
The synthesis of polystyrene nanoparticles through microemulsion polymerization is presented as an undergraduate advanced organic laboratory exercise. The resultant polymers molecular weight and particle size are studied as a function of monomer and initiator concentration. A comparison of cationic vs. anionic surfactants, and their effects on the polymer produced through microemulsion polymerization are also investigated. A direct relationship is observed between molecular weight and monomer concentration. A direct relationship is also found for the particle size of the latex produced. An inverse relationship is observed for molecular weight and particle size as the initiator concentration was raised. Comparison of molecular weight and latex size for cationic and anionic surfactants demonstrates that the anionic surfactant produces both a higher molecular weight and a larger latex size over the entire monomer and initiator concentration ranges.  相似文献   

7.
We have demonstrated that polystyrene latex coated with titania nanosheets can be fabricated into a close-packed colloidal crystalline array, and that these coated colloidal spheres can be used to control the peak position of optical stop bands through the coating. The titania-nanosheets-coated polystyrene latex was prepared by the layer-by-layer (LBL) assembly coating process, involving alternating lamination of cationic polyelectrolytes and anionic titania nanosheets on monodisperse polystyrene latex particles. The Bragg diffraction peak of the colloidal crystalline array shifted to longer wavelengths with the coating of titania nanosheets. This red shift was caused by an increase in refractive index upon coating, as revealed by angle-resolved reflection spectra measurements. The current work suggests new possibilities for the creation of advanced colloidal crystals having tunable optical properties from tailored colloidal spheres.  相似文献   

8.
Uniformly sized porous polymer particles with different polarity namely poly(divinylbenzene), poly(vinyl acetate‐co‐divinylbenzene), poly(ethylene dimethacrylate), and poly (glycidyl methacrylate‐co‐ethylene dimethacrylate) were prepared in the micron‐size range by a seeded polymerization method. Parameters affecting the particle morphologies including monomer mixture content, porogen content, and polystyrene (PS) seed latexes were varied, and the morphologies of the resulting particles were investigated by scanning electron and confocal microscopy. The results obtained indicated that the particle shape depended dominantly on the molecular weight of the PS seed template. Deformed particles, including collapsed spheres and spheres with holes were obtained when high molecular weight PS seeds were used, whereas well‐defined polymer particles were produced easily by using low molecular weight seeds. The use of 1,1‐diphenylethylene as a chain terminator during seed polymerization is proposed in this work as an efficient method to lower molecular weight of PS in seed particles while keeping seed size small. This low molecular weight seed template retained its spherical geometry after swelling and polymerization with different second stage monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Colloidal crystallization and amorphous solidification of deionized suspensions of the polydispersed cationic gel spheres of lightly cross-linked poly(2-vinylpyridine), CAIBA-P2VP (107~113 nm in diameter, ±19~22 nm in dispersity), have been studied from the reflection spectroscopy, morphology, phase diagram, and elastic property. Crystallization takes place even for the polydispersed cationic gel spheres by the significant contribution of the extended electrical double layers formed around the spheres. Critical concentrations of melting coexisted with ion exchange resins were around 0.02 in volume fraction and high compared with those of other cationic and anionic gel crystals examined hitherto. The densities (ρ) of CAIBA-P2VP in suspension state, i.e., weight percent of the gel spheres divided by the corresponding volume percent, was around 0.3. The ρ values decreased sharply with decreasing size of P2VP gel spheres, which supports the small gel spheres containing much water inside and being softer than the large ones. The closest intersphere distances of the crystals and/or amorphous solids were much longer than the hydrodynamic diameters of the gel spheres especially at low sphere concentrations. Fluctuation parameters (b) evaluated from the rigidities of CAIBA-P2VP (0.15~0.28) were large compared with those of gel crystals of large-sized P2VP-based cationic gel spheres, anionic thermosensitive gel spheres of poly(N-isopropylacrylamide) (0.05~0.09) and further much larger than those of typical colloidal hard spheres (around 0.03). The dispersity in sphere size played an important role for distinguishing crystal and amorphous solid. Importance of the extended electrical double layers around the cationic gel spheres is supported in addition to the excluded volume effect of the sphere themselves on the crystallization and/or solidification.  相似文献   

10.
Crosslinked polymer seed latexes of butyl acrylate, methyl methacrylate and methacrylic acid were synthesized with ethylene glycol dimethacrylate as a crosslinking agent in a first step. Three different processes of seeded emulsion polymerization were used to prepare an outlayer of polysiloxane on the above seed latex particles: (A) direct anionic polymerization of D4 (octamethyl tetracyclosiloxane) catalyzed by potassium hydroxide; (B) direct cationic polymerization of D4 onto the seed catalyzed by dodecylbenzene sulfonic acid; (C) a vinyl-containing polysiloxane prepared by copolymerization of D4 and vinyl septamethyl tetracyclosiloxane was added before the D4 cationic polymerization. Characterization by transmission electron microscopy showed that only process C provided satisfactory results. Film hardness was measured, and the latex film from process C demonstrated the lowest hardness of all the films. The mechanism of polymerization is discussed.  相似文献   

11.
Cationic and anionic amphiphilic monomers (surfmers) were synthesized and used to stabilize particles in miniemulsion polymerization. A comparative study of classical cationic and anionic surfactants and the two surfmers was conducted with respect to the reaction rates and molecular weight distributions of the formed polymers. The reversible addition–fragmentation chain transfer process was used in the miniemulsion polymerization reactions to control the molecular weight distribution. The reaction rates of the surfmer‐stabilized miniemulsion polymerization of styrene and methyl methacrylate were similar (in most cases) to those of the classical‐surfactant‐stabilized miniemulsion polymerizations. The final particle sizes were also similar for polystyrene latexes stabilized by the surfmers and classical surfactants. However, poly(methyl methacrylate) latexes stabilized by the surfmers had larger particle sizes than latexes stabilized by classical surfactants. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 427–442, 2006  相似文献   

12.
Kinetic analyses were made of the seed polymerization of tetraethyl ortho-silicate (TEOS) in the presence of rod-like colloidal particles of palygorskite and cationic -FeO(OH) by turbidity and dynamic light-scattering measurements. Transmission electron microscopic measurements supported the formation of core-shell particles. The seed polymerization of TEOS took place exclusively on the surfaces of palygorskite. The main cause of the observation is due to the fact that the main component of palygorskite is SiO2 and the affinity between palygorskite and TEOS is high, though the electrostatic repulsion between them is not favorable for shell formation. The shell formation of silica on a -FeO(OH) particle also proceeded. The electrostatic attraction forces between the anionic polar TEOS monomers and cationic -FeO(OH) particles played an important role in shell formation. These results are consistent with a polymerization mechanism consisting of the formation of small preliminary particles followed by their coalescence on the surfaces of the seeds to give the final large particles coated with silica layers.  相似文献   

13.
Norbornene‐derived copolymer with side‐chain phosphonic acid and cationic motifs (NORP‐PHOS‐CAT copolymer) are synthesized using ring opening metathesis polymerization method. All the monomers and polymers are characterized very carefully using nuclear magnetic resonance, MASS, Fourier transform infrared spectroscopy, and gel permeation chromatography technique. Thermogravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscope techniques are employed to confirm the anchoring of Fe3O4 particles to the NORP‐PHOS‐CAT copolymer. Formation of nano‐aggregates from NORP‐PHOS‐CAT copolymer is first observed in dynamic light scattering, and later, it is confirmed as nano‐spheres by scanning electron microscope and transmission electron microscopy studies. Zeta‐potential values of nano‐spheres suggest that the cationic motifs are on the surface. The encapsulation of anionic dye methyl orange to the nanocarrier is analyzed through UV–Vis spectroscopy in aqueous medium. DNA binding nature of NORP‐PHOS‐CAT‐Fe copolymer is confirmed through the circular dichroism measurement and UV–Vis spectroscopy. To the best of our knowledge, this is the first report where the norbornene‐derived copolymers that are elegantly synthesized with both magnetic as well as cationic nature to demonstrate the effective encapsulation of dye into the nano‐spheres followed by its release. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Silica particles with different morphology have been functionalized with carbon shells by different synthetic procedures. In the key step, the bare silica particles are functionalized by a specific cationic surface polymerization with furfuryl alcohol (FA). The polyfurfuryl alcohol (PFA)/silica hybrid particles have been also post-functionalized with maleic anhydride (MSA) by a Diels Alder reaction. Simultaneously occuring cationic polymerization of FA and sol-gel process with TEOS has been used for producing interpenetrating carbon-silica hybrid materials. The thermal transformation of the PFA component on silica into the carbon phase has been carried out under argon atmosphere in a temperature range from 700°C to 900°C. The influence of the former morphology of the silica on the homogenity of the resulting carbon layer is shown by zetapotential measurements and electron microscopic investigations.  相似文献   

15.
Well‐defined end‐functionalized polystyrene, poly(α‐methylstyrene), and polyisoprene with polymerizable aziridine groups were synthesized by the termination reactions of the anionic living polymers of styrene, α‐methylstyrene, and isoprene with 1‐[2‐(4‐chlorobutoxy)ethyl]aziridine in tetrahydrofuran at ?78 °C. The resulting polymers possessed the predicted molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.1) as well as aziridine terminal moieties. The cationic ring‐opening polymerization of the ω‐monofunctionalized polystyrene having an aziridinyl group with Et3OBF4 gave the polymacromonomer, whereas the α,ω‐difunctional polystyrene underwent crosslinking reactions to afford an insoluble gel. Crosslinking products were similarly obtained by the reaction of the α,ω‐diaziridinyl polystyrene with poly(acrylic acid)‐co‐poly(butyl acrylate). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4126–4135, 2005  相似文献   

16.
Colloidal single crystals of cationic polymer spheres (198–250 nm in diameter) in deionized aqueous dispersions were formed for the first time. The spheres used were poly(styrene-co-methacryloyloxyphenyldimethylsulfonium) cations. These cations are unstable in deionized suspensions with mixed beds of cation-exchange and anion-exchange resins. This was clarified by reflection spectroscopy, pH, conductance and -potential measurements for 250 days after suspension preparation. Colloidal crystals formed over a period of 24 h for the deionized suspensions at sphere concentrations higher than 0.09 in volume fraction. The nearest-neighbor intersphere distances coincide satisfactorily with the calculated values using the diameter and the concentration of the spheres. Alloy crystals formed from binary mixtures of the cationic polymer spheres and the anionic silica spheres when the ratio of the volume fraction of cationic spheres against the sum of the both cationic and anionic spheres was smaller than 0.3.  相似文献   

17.
30wt% solid content, anionic seed copolymer latex P(methyl acrylate-co-methyl methacrylate) was prepared by conventional emulsion polymerization, and then the seeded emulsion polymerization was carried out accompanied with the electrostatic coagulation during the reaction in the presence of counter-ion species, such as cationic monomer and initiator. In this article, effects of cationic monomer (dimethyl aminoethyl methacrylate, DM) content, secondary monomer to seed polymer weight ratio, M/P and amount of emulsifier (polyoxyethylene nonylphenylether with 23 units of ethylene oxide, PEO23) were investigated on the effective particle growth and the stability of final latex. With 10wt% DM in monomer, M/P ratio at 2.0 were recommended. An optimal policy for handling the emulsifier content without the nucleation of secondary particles while achieving the controlled coagulative growth was proposed from the observations of polymer yield and particle size during the polymerization.  相似文献   

18.
Several series of polyphosphonium salts have been prepared. These include those in which the cationic sites are located at regular intervals along a linear chain of defined length (“strings”) and those in which the cationic sites are in linkages arrayed in branching arms about a central focus unit (“balloons”). Similarly, polyphosphonium balloon arrays have been attached to a polystyrene backbone providing a material that can serve as an anionic exchange resin. Several of the resultant materials have demonstrated antibacterial activity, in systems analogous to those previously reported for simple functionalized polystyrene species, and continue to be investigated. © 1998 John Wiley & Sons, Inc. Heteroatom Chem 9:495–502, 1998  相似文献   

19.
We describe here a method for study of bulk release and local molecular transport within mesoporous silica spheres. We have analyzed the loading and release of charged fluorescent dyes from monodisperse mesoporous silica (MMS) spheres with an average pore size of 2.7 nm. Two different fluorescent dyes, one cationic and one anionic, have been loaded into the negatively charged porous material and both the bulk release and the local molecular transport within the MMS spheres have been quantified by confocal laser scanning microscopy. Analysis of the time-dependent release and the concentration profiles of the anionic dye within the spheres show that the spheres are homogeneous and that the release of this nonadsorbing dye follows a simple diffusion-driven process. The concentration of the cationic dye varies radially within the MMS spheres after loading; there is a significantly higher concentration of the dye close to the surface of the spheres (forming a "skin") compared to that at the core. The release of the cationic dye is controlled by diffusion after an initial period of rapid release. The transport of the cationic dye within the MMS spheres of the dye from the core to near the surface is significantly faster compared to the transport within the surface "skin". A significant fraction of the cationic dye remains permanently attached to the negatively charged walls of the MMS spheres, preferentially near the surface of the spheres. Relating bulk release to the local molecular transport within the porous materials provides an important step toward the design of new concepts in controlled drug delivery and chromatography.  相似文献   

20.
Kinetic activation parameters and thermodynamic functions describing the reversible anionic polymerization of 2-methoxy-2-oxo-1,3,2-dioxaphosphorinane (1,3-propylene methyl phosphate) were determined. Enthalpy and entropy of the anionic propagation ? depropagation equilibrium were found to be close to those found previously by the present authors for the cationic polymerization, while the activation parameters of propagation and depropagation differ substantially for both processes and reflect the differences in the involved mechanisms. Thus, data for anionic polymerization (and cationic polymerization in parentheses) are: ΔH1s° = ?0.7 kcal/mole (?1.1); ΔS1s° = ?2.8 cal/mole-deg (?5.4); ΔHp? = 26.7 kcal/mole, and ΔSp? = ?6.1 cal/mole-deg. The polymers obtained have low degrees of polymerization (DP n ≤ 10) because of the extensive chain transfer, leaving cyclic end groups in macromolecules. The presence, structure and concentration of the end groups have been determined by 1H-, 31P-, and 13C-NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号