首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal oxide (ZrO2) nanoparticle-dispersed polymer films (hybrid latex films) were prepared from polymer particles incorporating ZrO2 nanoparticles (hybrid latex dispersion). The hybrid latex dispersions were synthesized by miniemulsion polymerization. The resulting films were transparent, and they derived their properties from the ZrO2 nanoparticles. The refractive indexes of the films increased with the ZrO2 content. Surface-modified ZrO2 nanoparticles were dispersed successfully in a polymer matrix containing phosphoric acid groups, which interacts with the surfaces of the ZrO2 nanoparticles and increases the compatibility between the polymer and ZrO2.  相似文献   

2.
Summary: The synthesis of aqueous dispersions of hybrid acrylic copolymer particles with either a monofunctional or a multifunctional polyhedral oligomeric silsesquioxane methacrylate comonomer has been performed by free radical heterophase polymerization. The miniemulsion process gives stable latexes, whereas the less controlled emulsion route results in colloidal instability of the products. The thermal and mechanical properties of the nanocomposite latex films have been preliminarily investigated.

The nanocomposite latex particles based on hybrid copolyacrylates with highly dispersed POSS cages.  相似文献   


3.
The aim of the research was obtaining and application of smectic clay modifying agent. The organophilic clay is used as nanofiller in polymer nanocomposites [1]. A microwave-assisted reaction led to obtaining N-heptaquinolinum, which is amphiphilic compound, containing both hydrophobic (alkyl and aromatic) and hydrophilic sections in its structure [2]. N-heptaquinolinum was used as a montmorillonite clay modifying agent. Modification was carried out in formulated way [3, 4]. Modification efficiency was determined by X-ray diffraction (XRD) analysis and elementary analysis. Organophilic clay (Ch7) was introduced, using the extrusion method, into polyethylene matrix in different mass relations (1.5, 3 and 5?%) [3]. The structure of obtained materials was studied by means of XRD and SEM. To evaluate potential applications thermal properties of received nanocomposites were tested with thermogravimetric analysis and differential scanning calorimetry. The thermal stability of PE/clay composites can be improved in the case of loading 1.5 and 5?mass%.  相似文献   

4.
To improve the ultraviolet resistance and thermal stability of waterborne polyurethane, stable waterborne polyurethane/nano-cerium oxide hybrid dispersions were obtained by adding nano-cerium colloids to previously synthesized waterborne polyurethane dispersions. The dried ceria colloid was characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The XRD results indicated the prepared CeO2 was a face-centered cubic structure. The prepared polyurethane/CeO2 dispersions were studied by dynamic light scattering (DLS), transmission electron microscopy (TEM), UV–Vis spectroscopy and accelerated weathering test. The dried polyurethane/CeO2 films were characterized using thermogravimetric analysis (TGA). The DLS analysis indicated the particles average diameter of hybrids emulsion was bigger than that of the pure waterborne polyurethane dispersion. TG analysis and accelerated weathering test suggested the hybrid latex films had better thermal stability and mechanical properties than those of the pure waterborne polyurethane. The UV–Vis absorption capacity of the dispersions prepared was increasing with the amount of CeO2 colloid increased.  相似文献   

5.
We investigate the multilayered structures of poly(ethylene)oxide/montmorillonite nanocomposite films made from solution. The shear orientation of a polymer-clay network in solution combined with simultaneous solvent evaporation leads to supramolecular multilayer formation in the film. The resulting films have highly ordered structures with sheet-like multilayers on the micrometer length scale. The polymer covered clay platelets were found to orient in interconnected blob-like chains and layers on the nanometer length scale. Inside the blobs, scattering experiments indicate the polymer covered and stacked clay platelets oriented in the plane of the film. The polymer is found to be partially crystalline although this is not visible by optical microscopy. Atomic force microscopy suggests that the excess polymer, which is not directly adsorbed to the clay, is wrapped around the stacked platelets building blobs and the polymer also interconnects the polymer-clay layers. Overall our results suggest the re-intercalation of clay platelets in films made from exfoliated polymer-clay solutions as well as the supramolecular order and hierarchical structuring on the nanometer, via micrometer to the centimeter length scale.  相似文献   

6.
Herein, we report on the synthesis of film-forming poly(styrene-co-butyl acrylate-co-acrylic acid)/SiO2 [P(St-BA-AA)/SiO2] nanocomposites by in situ formation of SiO2 nanoparticles from TEOS via sol–gel process in the presence of poly(acrylic acid) (PAA)-functionalized poly(styrene-co-butyl acrylate) [P(St-BA)] particles fabricated by soap-free emulsion polymerization. The formed silica particles could be absorbed by polyacrylate chains on the surface of PAA-functionalized P(St-BA) particles; thus, raspberry-like polymer/silica nanocomposites would be obtained. Transmission electron microscopy, Fourier transform infrared spectroscopy, attenuated total reflectance infrared spectrum, ultraviolet–visible transmittance spectra, and thermogravimetric analysis were used to characterize the resulting composites. The results showed that the hybrid polymer/silica had a raspberry-like structure with silica nanoparticles anchored on the surface of polymer microspheres. The thermal, fire retardant, and mechanical properties and water resistance of the film were improved by incorporating silica nanoparticles, while the optical transmittance was seldom affected due to nanosized silica particles uniformly dispersed in the film.
Figure
Film-forming polymer/silica nanocomposites with raspberry-like morphology have been successfully prepared via soap-free emulsion polymerization followed by the sol–gel process. The number and the size of SiO2 particles coated on the surface of polymer particles can be adjusted by the amounts of TEOS and ammonia. After the film formation of polymer/silica nanocomposites, silica nanoparticles are homogeneously dispersed within the film without aggregation.  相似文献   

7.
In this study, waterborne polyurethane (WPU) hybrid emulsions with a weight ratio of 2/1 were prepared by emulsion polymerization using a mixture of styrene (St) and/or butyl acrylate (BA) monomers with WPU dispersion. WPU dispersion was synthesized with isocyanic acid and m-tetramethylxylene diisocyanate (m-TMXDI)-based anionic poly(urethane-urea) dispersions using the prepolymer mixing process. The structures of WPU and hybrids were characterized by FTIR spectroscopy. The size and morphology of the latex particles were investigated using dynamic light scattering and transmission electron microscopy, respectively. The stability of the emulsions was determined according to their shelf life and particle size using the dispersion analyser LUMiSizer® with STEP?-Technology. The thermal and mechanical properties of these films were examined by thermogravimetric analysis and strain-stress curves.  相似文献   

8.
Influences of exchangeable interlayer cations were investigated on self-standing film formability, film morphology, and properties of the clay films such as flexibility and gas barrier property. Ion-exchanged montmorillonite samples were prepared by a cation exchange from naturally bearing cation, mostly Na+, to Li+, Mg2+, Ca2+, Al3+, and Fe2+, 3+. Self-standing films were prepared from aqueous colloidal dispersions of these montmorillonite samples with no additives. The montmorillonite samples with monovalent or divalent cation formed flat self-standing films while the Al-montmorillonite sample produced a distorted film. The Fe-montmorillonite sample formed many separated reddish-brown rod-shaped pieces. Clay film microstructures were different with interlayer cations. The films with monovalent interlayer cations were constructed by the stacking of units with delicately waved thin clay sheets in the whole film, but other films show different morphologies between the upper side and lower side; the upper side is laminated with thin sheets; the lower side is laminated with large thick sheets.The self-standing films’ flexibility and gas barrier property differed according to the interlayer cations. These properties were good in cases of samples with monovalent cations. The innumerable short wave and sheet thinness are considered to foster good flexibility and gas barrier properties. The differences in film formability and properties of the films are attributable to different swellability among samples with different interlayer cations. The montmorillonite samples with monovalent cations swell sufficiently by water, but those with polyvalent cations swell poorly. In the latter case, clay crystals aggregate in water, then the aggregate grows into large particles, creating a film with large particles.  相似文献   

9.
The thermomechanical properties, morphology, and gas permeability of hybrids prepared with three types of organoclays were compared in detail. Hexadecylamine–montmorillonite (C16–MMT), dodecyltrimethyl ammonium bromide–montmorillonite (DTA‐MMT), and Cloisite 25A were used as organoclays in the preparation of nanocomposites. From morphological studies using transmission electron microscopy, most clay layers were found to be dispersed homogeneously in the matrix polymer, although some clusters or agglomerated particles were also detected. The initial degradation temperature (at a 2% weight loss) of the poly(lactic acid) (PLA) hybrid films with C16–MMT and Cloisite 25A decreased linearly with an increasing amount of organoclay. For hybrid films, the tensile properties initially increased but then decreased with the introduction of more of the inorganic phase. The O2 permeability values for all the hybrids for clay loadings up to 10 wt % were less than half the corresponding values for pure PLA, regardless of the organoclay. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 94–103, 2003  相似文献   

10.
The evolution and the origin of "solid-like state" in molten polymer/clay nanocomposites are studied. Using polypropylene/clay hybrid (PPCH) with sufficient maleic anhydride modified PP (PP-MA) as compatibilizer, well exfoliation yet solid-like state was achieved after annealing in molten state. Comprehensive linear viscoelasticity and non-linear rheological behaviors together with WAXD and TEM are studied on PPCH at various dispersion stages focusing on time,temperature and deformation dependencies of the "solid-like" state in molten nanocomposites. Based on these, it is revealed that the solid-structure is developed gradually along with annealing through the stages of inter-layer expansion by PP-MA,the diffusion and association of exfoliated silicate platelets, the formation of band/chain structure and, finally, a percolated clay associated network, which is responsible for the melt rigidity or solid-like state. The network will be broken down by melt frozen/crystallization and weakened at large shear or strong flow and, even more surprisingly, may be disrupted by using trace amount of silane coupling agent which may block the edge interaction of platelets. The solid-like structure causes characteristic non-linear rheological behaviors, e.g. residual stress after step shear, abnormal huge stress overshoots in step flows and, most remarkably, the negative first normal stress functions in steady shear or step flows. The rheological and structural arguments challenge the existing models of strengthened entangled polymer network by tethered polymer chains connecting clay particles or by chains in confined melts or frictional interaction among tactoids. A scheme of percolated networking of associated clay platelets, which may in band form of edge connecting exfoliated platelets, is suggested to explain previous experimental results.  相似文献   

11.
High solids content film‐forming poly[styrene‐co‐(n‐butyl acrylate)] [poly(Sty‐co‐BuA)] latexes armored with Laponite clay platelets have been synthesized by soap‐free emulsion copolymerization of styrene and n‐butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylate‐terminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo‐transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.

  相似文献   


12.
We present hybrid films consisting of a composite prepared from polystyrene (PS) and titanium dioxide (titania; TiO2) and molecularly imprinted with 1-pyrenebutyric acid (PBA). The interaction of PBA with the polymer is shown to occur via binding of the carboxylic group to TiO2 and hydrophobic interaction of the pyrene moiety with the PS network. We investigated the effects of the PS fraction on morphology, imprinting properties, and guest binding. The template could be completely removed by incubating the films in an acetonitrile solution of pyrene, which is due to the stronger π–π interaction between PBA and pyrene than the interaction between PBA and its binding site. A guest binding study with pyrene, 1-aminopyrene, pyrenemethanol, and anthracene-9-carboxylic acid showed that the hybrid films possessed selectivity and much higher binding capacity for PBA. This study demonstrates the first case of clear PS-assisted imprinting, where the π–π interaction of the template with a linear (non-crosslinked) polymer creates selective binding sites and enhances the binding capacity. This is a driving force for guest binding in addition to the interaction of the template/analyte with TiO2. All molecularly imprinted films displayed better binding, repeatability and reversibility compared to the respective non-imprinted films.
Figure
Illustration of the fabricated polystyrene/titania hybrids imprinted with 1-pyrenebutyric acid providing the interaction between the organic and inorganic components through the pyrene and carboxylic moieties  相似文献   

13.
Summary: The unusual structure of poly(ethylene oxide) (PEO) and Laponite clay in transparent nanocomposite films was investigated using scanning electron, atomic force, and optical microscopy, and X‐ray scattering. Each method is sensitive to different aspects of structural features and together they measure the resulting morphology and shear‐induced orientation. On nanometer length scales, clay platelets were found to orient in bundles while polymer crystallinity was suppressed. Microscopy led to the observation of unexpected and highly oriented multilayers on the micron length scale.

Scanning electron microscopy image of the freeze‐fractured surface of a poly(ethylene oxide)–Laponite film: the view on top of the xy plane.  相似文献   


14.
Acrylate–alkyd hybrid latex via miniemulsion polymerizations show promise as water‐borne coating systems. However, poor homogeneity of the particles caused by the immiscibility of the alkyd in polyacrylate limits monomer conversion and film formation. To resolve this problem, the hybrid miniemulsion polymerization of acrylate in the presence of linoleic acid and sunflower seed oil was carried out. Products were characterized by solvent extraction, dynamic light scattering, gel permeation chromatography (GPC), differential scanning calorimeter (DSC), and transmission electron microscopy (TEM). The results provide clear evidence that substituting a fatty acid or natural oil with smaller molecular size (weight) for a conventional alkyd improves the grafting efficiency, and enhances the homogeneity of the hybrid polymer particles in water‐borne latex systems.

  相似文献   


15.
In this communication we investigate two dyes N,N′-dioctadecyl thiacyanine perchlorate (NK) and octadecyl rhodamine B chloride (RhB) in Langmuir and Langmuir–Blodgett (LB) films with or with out a synthetic clay laponite. Observed changes in isotherms of RhB in absence and presence of nano-clay platelets indicate the incorporation of clay platelets onto RhB-clay hybrid films. AFM images confirm the incorporation of clay into hybrid films. FRET is observed in clay dispersion and LB films with and without clay. Efficiency of energy transfer is maximum in LB films with clay.  相似文献   

16.
Novel multifunctional titanium dioxide (TiO2)/polystyrene/magnetite composite hybrid polymer particle dispersions with TiO2 nanoparticles in the surface and magnetite nanoparticles encapsulated inside the polymer matrix were produced by Pickering miniemulsion polymerization in one single step. Whereas TiO2 nanoparticles were used to impart photocatalytic functionality and colloidal stability, magnetite nanoparticles were incorporated to allow an easy extraction for recovery and reuse of the composite multifunctional particles. The morphology of the composite particles was assessed by scanning transition electron microscopy (STEM) and energy‐dispersive X‐ray spectroscopy (EDX). The paramagnetism of the particles was analyzed using a SQUID magnetometer and their photocatalytic activity was assessed by degrading methylene blue (MB) solutions under UV light and by recovering and reusing of the particles in five consecutive cycles. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3350–3356  相似文献   

17.
Graft copolymers of polyurethane (PU) with various vinyl monomers were synthesized through a one-pot but two-step miniemulsion polymerization process. Firstly, the polycondensation of isophorone diisocyanate (IPDI) with hydroxyl-terminated polybutadiene (HTPB) had been performed in aqueous miniemulsion at 40 °C in order to obtain PU dispersions. Consecutively, an in-situ graft copolymerization of the vinyl monomers with the synthesized PU was initiated by γ-ray radiation at room temperature. The grafting efficiency of PU with vinyl monomer (GPU/monomer) was calculated from 1H NMR spectra and the particle morphology of the final hybrid latex was observed by transmission electron microscopy (TEM). As there was no monomer transferring in miniemulsion system, homogenous hybrid particles would be synthesized provided that the monomer was miscible with PU, such as styrene. With the increase of the polarity of the monomer, the compatibility of PU with monomer decreased. GPU/monomer varied as GPU/styrene(37%)>GPU/butyl acrylate (BA)(21%)>GPU/methyl methacrylate (MMA)(12%). The proportion of homogeneous nucleation would increase as the hydrophilicity of the monomer increased. High temperature would destabilize the miniemulsion so as to result in a less grafting efficiency. Compared to the phase separation during the seeded emulsion polymerization, the miniemulsion polymerization method facilitated the preparation of homogeneous materials owing to its monomer droplet nucleation mechanism.  相似文献   

18.
The present features review article discusses the crystallisation of the polymer matrix when containing silicate layers. The accent is put on nylons (polyamides) and poly(ethylene oxide) as typical hydrophilic polymers and, poly(propylene) from the hydrophobic group. The effects of the clay, either intercalated or exfoliated, on the crystallisation behaviour of the matrix are highlighted. In addition, the crucial aspects of the semicrystalline morphology of the matrix in the presence of the clay platelets are also debated. The overall crystallisation rate is reported to slow down for most of the crystallisable polymer matrices on account of a retarding growth effect exerted by the clay platelets. As far as the location of the exfoliated clay platelets in the polymer matrix is concerned, they are assumed to be rejected from the crystalline phase in the interspherulitic space.

  相似文献   


19.
Conjugated polymer nanoparticles (CPNs) were developed based on a polyfluorene-based conjugated polymer with thiophene units carrying pyridyl moieties incorporated in the backbone of polymer chains (PFPyT). Hybrid CPNs fabricated from PFPyT and an amphiphilic polymer (NP1) displayed pH-sensitive fluorescence emission features in the range from pH 4.8 to 13, which makes them an attractive nanomaterial for wide range optical sensing of pH values. The fluorescence of hybrid CPNs based on chemically close polyfluorene derivatives without pyridyl moieties (NP3), in contrast, remains virtually unperturbed by pH values in the same range. The fluorescence emission features of NP1 underwent fully reversible changes upon alternating acidification/basification of aqueous dispersions of the CPNs and also displayed excellent repeatability. The observed pH sensing properties of NP1 are attributed to protonation/deprotonation of the nitrogen atoms of the pyridine moieties. This, in turn, leads to the redistribution of electron density of pyridine moieties and their participation in the π-conjugation within the polymer main chains. The optically transparent amphiphilic polymers also exerted significant influence on the pH sensing features of the CPNs, likely by acting as proton sponge and/or acid chaperone. Figure
pH-sensitive fluorescent nanoparticles were fabricated from pyridine-functionalized conjugated polymer; protonation/deprotonation of the nitrogen atoms of pyridine moieties upon pH changes, which leads to the redistribution of electron density of pyridine moieties and their participation in the π-conjugation with polymer chains, were confirmed.  相似文献   

20.
The aim of this study was to prepare transparent nanohybrid films with low coefficient of thermal expansion (low CTE), which consist of acryl resin and nanosized clay. The hybrid films with different clay contents were prepared by UV curing of tricyclodecane dimethanol diacrylate (TCDDMDA) including nanosized clay. All obtained films were transparent similar to pure poly(TCDDMDA). In addition, the film containing 40 wt.% of clay showed a low CTE of 10 ppm/K in 150–200 °C, which is similar to that of inorganic materials such as glass. The significant property improvement is related to shape effect and orientation of clay in polymer matrix. Wide-angle X-ray diffraction measurement was carried out to investigate orientation of nanosized clay in polymer matrix. From this measurement, it was confirmed that the clay platelets were oriented parallel with film surface with increasing clay content, and orientation coefficient of the clay in polymer matrix reached to f?=?0.65 for the hybrid film containing 40 wt.% of clay. Though, in comparison with the matrix, the flexibility of the hybrid film evaluated by the wind roll test with steel bar was lowered by increase of clay content, the hybrid film containing 40 wt.% of clay could be rewound with steel bar 10 mm across, and its flexibility was retained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号