首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We demonstrate a quasiballistic switching of the magnetization in a microscopic magnetoresistive memory cell. By means of time resolved magnetotransport, we follow the large angle precession of the free layer magnetization of a spin valve cell upon application of transverse magnetic field pulses. Stopping the field pulse after a 180 degrees precession rotation leads to magnetization reversal with reversal times as short as 165 ps. This switching mode represents the fundamental ultrafast limit of field induced magnetization reversal.  相似文献   

2.
王日兴  叶华  王丽娟  敖章洪 《物理学报》2017,66(12):127201-127201
在理论上研究了垂直自由层和倾斜极化层自旋阀结构中自旋转移矩驱动的磁矩翻转和进动.通过线性展开包括自旋转移矩项的Landau-Lifshitz-Gilbert方程并使用稳定性分析方法,得到了包括准平行稳定态、准反平行稳定态、伸出膜面进动态以及双稳态的磁性状态相图.发现通过调节电流密度和外磁场的大小可以实现磁矩从稳定态到进动态之间的转化以及在两个稳定态之间的翻转.翻转电流随外磁场的增加而增加,并且受自旋极化方向的影响.当自旋极化方向和自由层易磁化轴方向平行时,翻转电流最小;当自旋极化方向和自由层易磁化轴方向垂直时,翻转电流最大.通过数值求解微分方程,给出了不同磁性状态磁矩随时间的演化轨迹并验证了相图的正确性.  相似文献   

3.
王日兴  贺鹏斌  肖运昌  李建英 《物理学报》2015,64(13):137201-137201
本文在理论上研究了铁磁/重金属双层薄膜结构中自旋霍尔效应自旋矩驱动的磁动力学. 通过线性稳定性分析, 获得了以电流和磁场为控制参数的磁性状态相图. 发现通过调节电流密度和外磁场, 可以获得不同的磁性状态, 例如: 平面内的进动态、平面内的稳定态以及双稳态. 当外磁场的方向在一定的范围时, 通过调节电流密度可以实现磁矩的翻转和进动. 同时, 通过数值求解微分方程, 给出了这些磁性状态磁矩的演化轨迹.  相似文献   

4.
We demonstrate time reversal of nuclear spin dynamics in highly magnetized dilute liquid (3)He-(4)He mixtures through effective inversion of long-range dipolar interactions. These experiments, which involve using magic sandwich NMR pulse sequences to generate spin echoes, probe the spatiotemporal development of turbulent spin dynamics and promise to serve as a versatile tool for the study and control of dynamic magnetization instabilities. We also show that a repeated magic sandwich pulse sequence can be used to dynamically stabilize modes of nuclear precession that are otherwise intrinsically unstable. To date, we have extended the effective precession lifetimes of our magnetized samples by more than three orders of magnitude.  相似文献   

5.
Based on both the spin diffusion equation and the Landau-LlTshitz-Gilbert (LLG) equation, we demonstrate the influence of out-of-plane spin torque on magnetization switching and susceptibility in a magnetic multilayer system. The variation of spin accumulation and local magnetization with respect to time are studied in the magnetization reversal induced by spin torque. We also research the susceptibility subject to a microwave magnetic field, which is compared with the results obtained without out-of-plane torque.  相似文献   

6.
We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.  相似文献   

7.
The reversal of two-magnon relaxation associated with linear scattering of oscillations of uniform magnetization precession from sample nonuniformities is studied theoretically and experimentally in ferrite spheres of yttrium iron garnet (YIG). Relaxation reversal is performed by parametric phase conjugation of dipole-exchange spin waves formed as a result of scattering of uniform precession from inhomogeneities. As a result of two-magnon backward scattering of dipole-exchange spin waves with a certain time delay, magnetization oscillations are renewed with an amplitude that could exceed the initial amplitude of uniform precession. The relaxation reversal is due to crystallographic anisotropy of the sample and is manifested most strongly when a YIG sphere is magnetized along the intermediate axis [110]. Experiments were carried out on YIG spheres of diameter 0.65–1.05 mm for a parallel pumping frequency ω p /2π ≈ 9.4 GHz, which is about twice the uniform precession frequency. The maximal delay time for the restored signal of uniform precession was about 2 μs, while the maximal amplitude exceeded the initial uniform precession amplitude by a factor of about 5. The “latent” relaxation parameters of ferrites, e.g., the natural ferromagnetic resonance linewidth associated with many-particle processes and the linewidth associated with two-magnon scattering at bulk nonuniformities, are determined experimentally.  相似文献   

8.
A mechanism is proposed for manipulating the magnetic state of a helical spin density wave using a current. It is shown that a current through a bulk metal with a helical spin density wave induces a spin transfer torque, which gives rise to a rotation of the order parameter. The use of spin transfer torque to manipulate the magnetization in bulk systems does not suffer from the obstacles seen for magnetization reversal using interface spin transfer torque in multilayered systems. The effect is demonstrated by a quantitative calculation of the current induced magnetization dynamics of a rare earth metal, Er. Finally, we propose a setup for experimental verification.  相似文献   

9.
Main properties of the spin supercurrents and coherent precession of magnetization in the superfluid3He-B in hydrodynamic regime seem to be very well understood now. But recently surprisingly new unpredicted phenomena such as, for example, “catastrophic” relaxation, persistent spin precession, very strong magnetic relaxation, etc., have been observed in3He-B at ultralow temperatures in so-called non-hydrodynamic regime using both pulse and cw-NMR techniques. This paper deals with some of these new phenomena (a “linear term” in magnetic relaxation and a reduction of magnetization of coherent precession with magnetic field gradient) observed by cw-NMR technique, compares these results with new effects found by pulse NMR and speculates about the nature of these new phenomena.  相似文献   

10.
不将自旋扭矩因子近似为一个常数,利用Melnikov微扰方法推导了LLS方程解的表达式,通过VC与MATLAB混和编程进行计算,计算结果显示,与将自旋扭矩因子视为常数的情况相比较,自旋扭矩为磁化强度函数时的磁化强度运动轨道在离开未扰轨道初期仅在未扰轨道附近做微小振动,在翻转时刻附近有较大振荡,并且所预言的磁化强度翻转时刻相对提前. 关键词: 自旋扭矩 磁化强度 LLS方程 微扰  相似文献   

11.
In large magnetoresistance devices spin torque-induced changes in resistance can produce GHz current and voltage oscillations which can affect magnetization reversal. In addition, capacitive shunting in large resistance devices can further reduce the current, adversely affecting spin torque switching. Here, we simultaneously solve the Landau-Lifshitz-Gilbert equation with spin torque and the transmission line telegrapher's equations to study the effects of resistance feedback and capacitance on magnetization reversal of both spin valves and magnetic tunnel junctions. While for spin valves parallel (P) to anti-parallel (AP) switching is adversely affected by the resistance feedback due to saturation of the spin torque, in low resistance magnetic tunnel junctions P-AP switching is enhanced. We study the effect of resistance feedback on the switching time of magnetic tunnel junctions, and show that magnetization switching is only affected by capacitive shunting in the pF range.  相似文献   

12.
The static and dynamic equilibrium states of spins in a thin layer of a conducting nanosized column containing two magnetic layers are analyzed theoretically. The magnetization of one of the layers is assumed to be fixed. The analysis is performed in terms of a macrospin model with allowance for the Slonczewski-Berger torque transfer. Bifurcation diagrams are constructed describing the change of spin states in the current-field plane. The relation of the specific features of varying magnetization and the spin precession frequency to bifurcations in the dynamic system under study is discussed. It is shown that the soft creation of cycles with a zero amplitude is accompanied by precession at a finite frequency and that the precession frequency becomes zero when a cycle with a finite amplitude disappears or arises in a jump. Comparative analysis is performed for two orientations of a magnetic field (parallel and perpendicular to the easy magnetization axis in the layer plane) in the presence of a current with a given spin orientation.  相似文献   

13.
Photoinduced magnetization dynamics is investigated in chemically ordered (LaMnO3)2n/(SrMnO3)n superlattices using the time-resolved magneto-optic Kerr effect. A monotonic frequency-field dependence is observed for the n=1 superlattice, indicating a single spin population consistent with a homogeneous hole distribution. In contrast, for n> or =2 superlattices, a large precession frequency is observed at low fields indicating the presence of an exchange torque in the dynamic regime. We attribute the emergence of exchange torque to the coupling between two spin populations-viscous and fast spins.  相似文献   

14.
We evidence multiple coherent precessional magnetization reversal in microscopic spin valves. Stable, reversible, and highly efficient magnetization switching is triggered by transverse field pulses as short as 140 ps with energies down to 15 pJ. At high fields a phase coherent reversal is found revealing periodic transitions from switching to nonswitching under variation of pulse parameters. At the low field limit the existence of a relaxation dominated regime is established allowing switching by pulse amplitudes below the quasistatic switching threshold.  相似文献   

15.
Applying one ultrashort magnetic field pulse, we observe up to 10 precessional switches of the magnetization direction in single crystalline Fe films of 10 and 15 atomic layers. We find that the rate at which angular momentum is dissipated in uniform large angle spin precession increases with time and film thickness, surpassing the intrinsic ferromagnetic resonance spin lattice relaxation of Fe by nearly an order of magnitude.  相似文献   

16.
We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. Th  相似文献   

17.
郭园园  蒿建龙  薛海斌  刘喆颉 《物理学报》2015,64(19):198502-198502
利用Landau-Lifshitz-Gilbert-Slonczewski方程, 在理论上研究了由磁矩垂直于膜面的自由层和磁矩平行于膜面的极化层组成的自旋转矩振荡器的振荡特性. 数值结果表明面内的形状各向异性能, 可以使自旋转矩振荡器在无磁场情形下产生自激振荡. 此特性可以用能量平衡方程解释, 即面内形状各向异性能可以导致系统中自旋转矩提供的能量与阻尼过程所消耗的能量之间的平衡. 特别是, 面内的形状各向异性能越大, 自旋转矩振荡器的可操控电流范围越大, 并且产生微波信号的频率越大, 但其阈值电流几乎不变.  相似文献   

18.
We analyze spin-dependent transport through spin valves composed of an interacting quantum dot coupled to two ferromagnetic leads. The spin on the quantum dot and the linear conductance as a function of the relative angle theta of the leads' magnetization directions is derived to lowest order in the dot-lead coupling strength. Because of the applied bias voltage spin accumulates on the quantum dot, which for finite charging energy experiences a torque, resulting in spin precession. The latter leads to a nontrivial, interaction-dependent, theta dependence of the conductance. In particular, we find that the spin-valve effect is reduced for all theta not equal pi.  相似文献   

19.
A novel, all-optical method to excite and detect spin waves in magnetic materials is presented. By exploiting the temperature dependence of the magnetic anisotropy, an ultrashort laser pulse is efficiently converted in a picosecond "anisotropy field" pulse that triggers a coherent precession of the magnetization. Recording the temporal evolution of the precessing spins by a time-delayed probe-pulse provides a quantitative method to study locally the magnetic anisotropy, as well as switching and damping phenomena in micromagnetic structures. Applications to nickel and permalloy ( Ni80Fe20) films are discussed, particularly showing the possibility to explore standing spin waves in thin films.  相似文献   

20.
It is shown that under the action of a proper microwave pulse sequence the equilibrium polarization of the electron spin may be transferred dynamically to the longitudinal nuclear magnetization which will oscillate due to the nuclear spin precession around the effective fields relating to differnt electron quantum number manifolds. These oscillations may be measured directly in the radiofrequency band. Analytical formulae are obtained for the case when all the nuclei coupled to an unpaired electron have spins of 1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号