首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a unified framework to solve distributionally robust mean-risk optimization problem that simultaneously uses variance, value-at-risk (VaR) and conditional value-at-risk (CVaR) as a triple-risk measure. It provides investors with more flexibility to find portfolios in the sense that it allows investors to optimize a return-risk profile in the presence of estimation error. We derive a closed-form expression for the optimal portfolio strategy to the robust mean-multiple risk portfolio selection model under distribution and mean return ambiguity (RMP). Specially, the robust mean-variance, robust maximum return, robust minimum VaR and robust minimum CVaR efficient portfolios are all special instances of RMP portfolios. We analytically and numerically show that the resulting portfolio weight converges to the minimum variance portfolio when the level of ambiguity aversion is in a high value. Using numerical experiment with simulated data, we demonstrate that our robust portfolios under ambiguity are more stable over time than the non-robust portfolios.  相似文献   

2.
Most of previous work on robust equity portfolio optimization has focused on its formulation and performance. In contrast, in this paper we analyze the behavior of robust equity portfolios to determine whether reducing the sensitivity to input estimation errors is all robust models do and investigate any side-effects of robust formulations. Therefore, our focus is on the relationship between fundamental factors and robust models in order to determine if robust equity portfolios are consistently investing more in the factors opposed to individual asset movements. To do so, we perform regressions with factor returns to explain how robust portfolios behave compared to portfolios generated from the Markowitz’s mean-variance model. We find that robust equity portfolios consistently show higher correlation with the three fundamental factors used in the Fama-French factor model. Furthermore, more robustness among robust portfolios results in a higher correlation with the Fama-French three factors. In fact, we show that as equity portfolios under no constraints on portfolio weights become more robust, they consistently depend more on the market and large factors. These results show that robust models are betting on the fundamental factors instead of individual asset movements.  相似文献   

3.
传统的均值-风险(包括方差、VaR、CVaR等)组合选择模型在计算最优投资组合时,常假定均值是已知的常值,但在实际资产配置中,收益的均值估计会有偏差,即存在着估计风险.在利用CVaR测度估计风险的基础上,研究了CVaR鲁棒均值-CVaR投资组合选择模型,给出了另外两种不同的求解方法,即对偶法和光滑优化方法,并探讨了它们的相关性质及特征,数值实验表明在求解大样本或者大规模投资组合选择问题上,对偶法和光滑优化方法在计算上是可行且有效的.  相似文献   

4.
Static hedge portfolios for barrier options are extremely sensitive with respect to changes of the volatility surface. In this paper we develop a semi-infinite programming formulation of the static super-replication problem in stochastic volatility models which allows to robustify the hedge against model parameter uncertainty in the sense of a worst case design. From a financial point of view this robustness guarantees the hedge performance for an infinite number of future volatility surface scenarios including volatility shocks and changes of the skew. After proving existence of such robust hedge portfolios and presenting an algorithm to numerically solve the underlying optimization problem, we apply the approach to a detailed example. Surprisingly, the optimal robust portfolios are only marginally more expensive than the barrier option itself.  相似文献   

5.
Robust portfolios reduce the uncertainty in portfolio performance. In particular, the worst-case optimization approach is based on the Markowitz model and form portfolios that are more robust compared to mean–variance portfolios. However, since the robust formulation finds a different portfolio from the optimal mean–variance portfolio, the two portfolios may have dissimilar levels of factor exposure. In most cases, investors need a portfolio that is not only robust but also has a desired level of dependency on factor movement for managing the total portfolio risk. Therefore, we introduce new robust formulations that allow investors to control the factor exposure of portfolios. Empirical analysis shows that the robust portfolios from the proposed formulations are more robust than the classical mean–variance approach with comparable levels of exposure on fundamental factors.  相似文献   

6.
《Optimization》2012,61(11):1761-1779
In this article, we study reward–risk ratio models under partially known message of random variables, which is called robust (worst-case) performance ratio problem. Based on the positive homogenous and concave/convex measures of reward and risk, respectively, the new robust ratio model is reduced equivalently to convex optimization problems with a min–max optimization framework. Under some specially partial distribution situation, the convex optimization problem is converted into simple framework involving the expectation reward measure and conditional value-at-risk measure. Compared with the existing reward–risk portfolio research, the proposed ratio model has two characteristics. First, the addressed problem combines with two different aspects. One is to consider an incomplete information case in real-life uncertainty. The other is to focus on the performance ratio optimization problem, which can realize the best balance between the reward and risk. Second, the complicated optimization model is transferred into a simple convex optimization problem by the optimal dual theorem. This indeed improves the usability of models. The generation asset allocation in power systems is presented to validate the new models.  相似文献   

7.
Several optimization approaches for portfolio selection have been proposed in order to alleviate the estimation error in the optimal portfolio. Among them are the norm-constrained variance minimization and the robust portfolio models. In this paper, we examine the role of the norm constraint in portfolio optimization from several directions. First, it is shown that the norm constraint can be regarded as a robust constraint associated with the return vector. Second, the reformulations of the robust counterparts of the value-at-risk (VaR) and conditional value-at-risk (CVaR) minimizations contain norm terms and are shown to be highly related to the ν-support vector machine (ν-SVM), a powerful statistical learning method. For the norm-constrained VaR and CVaR minimizations, a nonparametric theoretical validation is posed on the basis of the generalization error bound for the ν-SVM. Third, the norm-constrained approaches are applied to the tracking portfolio problem. Computational experiments reveal that the norm-constrained minimization with a parameter tuning strategy improves on the traditional norm-unconstrained models in terms of the out-of-sample tracking error.  相似文献   

8.
In this paper, we derive a portfolio optimization model by minimizing upper and lower bounds of loss probability. These bounds are obtained under a nonparametric assumption of underlying return distribution by modifying the so-called generalization error bounds for the support vector machine, which has been developed in the field of statistical learning. Based on the bounds, two fractional programs are derived for constructing portfolios, where the numerator of the ratio in the objective includes the value-at-risk (VaR) or conditional value-at-risk (CVaR) while the denominator is any norm of portfolio vector. Depending on the parameter values in the model, the derived formulations can result in a nonconvex constrained optimization, and an algorithm for dealing with such a case is proposed. Some computational experiments are conducted on real stock market data, demonstrating that the CVaR-based fractional programming model outperforms the empirical probability minimization.  相似文献   

9.
Robust optimization is a tractable alternative to stochastic programming particularly suited for problems in which parameter values are unknown, variable and their distributions are uncertain. We evaluate the cost of robustness for the robust counterpart to the maximum return portfolio optimization problem. The uncertainty of asset returns is modelled by polyhedral uncertainty sets as opposed to the earlier proposed ellipsoidal sets. We derive the robust model from a min-regret perspective and examine the properties of robust models with respect to portfolio composition. We investigate the effect of different definitions of the bounds on the uncertainty sets and show that robust models yield well diversified portfolios, in terms of the number of assets and asset weights.  相似文献   

10.
Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.  相似文献   

11.
Robust optimization approaches have been widely used to address uncertainties in radiation therapy treatment planning problems. Because of the unknown probability distribution of uncertainties, robust bounds may not be correctly chosen, and a risk of undesirable effects from worst-case realizations may exist. In this study, we developed a risk-based robust approach, embedded within the conditional value-at-risk representation of the dose-volume constraint, to deal with tumor shrinkage uncertainty during radiation therapy. The objective of our proposed model is to reduce dose variability in the worst-case scenarios as well as the total delivered dose to healthy tissues and target dose deviations from the prescribed dose, especially, in underdosed scenarios. We also took advantage of adaptive radiation therapy in our treatment planning approach. This fractionation technique considers the response of the tumor to treatment up to a particular point in time and reoptimizes the treatment plan using an estimate of tumor shrinkage. The benefits of our model were tested in a clinical lung cancer case. Four plans were generated and compared: static, nominal-adaptive, robust-adaptive, and conventional robust (worst-case) optimization. Our results showed that the robust-adaptive model, which is a risk-based model, achieved less dose variability and more control on the worst-case scenarios while delivering the prescribed dose to the tumor target and sparing organs at risk. This model also outperformed other models in terms of tumor dose homogeneity and plan robustness.  相似文献   

12.
We evaluate conditional value-at-risk (CVaR) as a risk measure in data-driven portfolio optimization. We show that portfolios obtained by solving mean-CVaR and global minimum CVaR problems are unreliable due to estimation errors of CVaR and/or the mean, which are magnified by optimization. This problem is exacerbated when the tail of the return distribution is made heavier. We conclude that CVaR, a coherent risk measure, is fragile in portfolio optimization due to estimation errors.  相似文献   

13.
In typical robust portfolio selection problems, one mainly finds portfolios with the worst-case return under a given uncertainty set, in which asset returns can be realized. A too large uncertainty set will lead to a too conservative robust portfolio. However, if the given uncertainty set is not large enough, the realized returns of resulting portfolios will be outside of the uncertainty set when an extreme event such as market crash or a large shock of asset returns occurs. The goal of this paper is to propose robust portfolio selection models under so-called “ marginal+joint” ellipsoidal uncertainty set and to test the performance of the proposed models. A robust portfolio selection model under a “marginal + joint” ellipsoidal uncertainty set is proposed at first. The model has the advantages of models under the separable uncertainty set and the joint ellipsoidal uncertainty set, and relaxes the requirements on the uncertainty set. Then, one more robust portfolio selection model with option protection is presented by combining options into the proposed robust portfolio selection model. Convex programming approximations with second-order cone and linear matrix inequalities constraints to both models are derived. The proposed robust portfolio selection model with options can hedge risks and generates robust portfolios with well wealth growth rate when an extreme event occurs. Tests on real data of the Chinese stock market and simulated options confirm the property of both the models. Test results show that (1) under the “ marginal+joint” uncertainty set, the wealth growth rate and diversification of robust portfolios generated from the first proposed robust portfolio model (without options) are better and greater than those generated from Goldfarb and Iyengar’s model, and (2) the robust portfolio selection model with options outperforms the robust portfolio selection model without options when some extreme event occurs.  相似文献   

14.
While dynamic decision making has traditionally been represented as scenario trees, these may become severely intractable and difficult to compute with an increasing number of time periods. We present an alternative tractable approach to multiperiod international portfolio optimization based on an affine dependence between the decision variables and the past returns. Because local asset and currency returns are modeled separately, the original model is non-linear and non-convex. With the aid of robust optimization techniques, however, we develop a tractable semidefinite programming formulation of our model, where the uncertain returns are contained in an ellipsoidal uncertainty set. We add to our formulation the minimization of the worst case value-at-risk and show the close relationship with robust optimization. Numerical results demonstrate the potential gains from considering a dynamic multiperiod setting relative to a single stage approach.  相似文献   

15.
Robust optimization, one of the most popular topics in the field of optimization and control since the late 1990s, deals with an optimization problem involving uncertain parameters. In this paper, we consider the relative robust conditional value-at-risk portfolio selection problem where the underlying probability distribution of portfolio return is only known to belong to a certain set. Our approach not only takes into account the worst-case scenarios of the uncertain distribution, but also pays attention to the best possible decision with respect to each realization of the distribution. We also illustrate how to construct a robust portfolio with multiple experts (priors) by solving a sequence of linear programs or a second-order cone program.  相似文献   

16.
The Markowitz Mean Variance model (MMV) and its variants are widely used for portfolio selection. The mean and covariance matrix used in the model originate from probability distributions that need to be determined empirically. It is well known that these parameters are notoriously difficult to estimate. In addition, the model is very sensitive to these parameter estimates. As a result, the performance and composition of MMV portfolios can vary significantly with the specification of the mean and covariance matrix. In order to address this issue we propose a one-period mean-variance model, where the mean and covariance matrix are only assumed to belong to an exogenously specified uncertainty set. The robust mean-variance portfolio selection problem is then written as a conic program that can be solved efficiently with standard solvers. Both second order cone program (SOCP) and semidefinite program (SDP) formulations are discussed. Using numerical experiments with real data we show that the portfolios generated by the proposed robust mean-variance model can be computed efficiently and are not as sensitive to input errors as the classical MMV??s portfolios.  相似文献   

17.
We generalize the notion of arbitrage based on the coherent risk measure, and investigate a mathematical optimization approach for tightening the lower and upper bounds of the price of contingent claims in incomplete markets. Due to the dual representation of coherent risk measures, the lower and upper bounds of price are located by solving a pair of semi-infinite linear optimization problems, which further reduce to linear optimization when conditional value-at-risk (CVaR) is used as risk measure. We also show that the hedging portfolio problem is viewed as a robust optimization problem. Tuning the parameter of the risk measure, we demonstrate by numerical examples that the two bounds approach to each other and converge to a price that is fair in the sense that seller and buyer face the same amount of risk.  相似文献   

18.
Markowitz的均值-方差模型在投资组合优化中得到了广泛的运用和拓展,其中多数拓展模型仅局限于对随机投资组合或模糊投资组合的研究,而忽略了实际问题同时包含了随机信息和模糊信息两个方面。本文首先定义随机模糊变量的方差用以度量投资组合的风险,提出具有阀值约束的最小方差随机模糊投资组合模型,基于随机模糊理论,将该模型转化为具有线性等式和不等式约束的凸二次规划问题。为了提高上述模型的有效性,本文以投资者期望效用最大化为压缩目标对投资组合权重进行压缩,构建等比例-最小方差混合的随机模糊投资组合模型,并求解该模型的最优解。最后,运用滚动实际数据的方法,比较上述两个模型的夏普比率以验证其有效性。  相似文献   

19.
A major sector of the bond markets is currently represented by instruments with embedded call options. The complexity of bonds with call features, coupled with the recent increase in volatility, has raised the risks as well as the potential rewards for bond holders. These complexities, however, make it difficult for the portfolio manager to evaluate individual securities and their associated risks in order to successfully construct bond portfolios. Traditional bond portfolio management methods are inadequate, particularly when interest-rate-dependent cashflows are involved. In this paper we integrate traditional simulation models for bond pricing with recent developments in robust optimization to develop tools for the management of portfolios of callable bonds. Two models are developed: a single-period model that imposes robustness by penalizing downside tracking error, and a multi-stage stochastic program with recourse. Both models are applied to create a portfolio to track a callable bond index. The models are backtested using ex poste market data over the period from January 1992 to March 1993, and they perform constistently well.  相似文献   

20.
In this paper, we combine robust optimization and the idea of ??-arbitrage to propose a tractable approach to price a wide variety of options. Rather than assuming a probabilistic model for the stock price dynamics, we assume that the conclusions of probability theory, such as the central limit theorem, hold deterministically on the underlying returns. This gives rise to an uncertainty set that the underlying asset returns satisfy. We then formulate the option pricing problem as a robust optimization problem that identifies the portfolio which minimizes the worst case replication error for a given uncertainty set defined on the underlying asset returns. The most significant benefits of our approach are (a) computational tractability illustrated by our ability to price multi-asset, American and Asian options using linear optimization; and thus the computational complexity of our approach scales polynomially with the number of assets and with time to expiry and (b) modeling flexibility illustrated by our ability to model different kinds of options, various levels of risk aversion among investors, transaction costs, shorting constraints and replication via option portfolios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号