首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparison of efficiency calibration of a HPGe gamma-ray spectrometer applied for non-destructive analysis of gamma-ray emitters in large volume samples of irregular shape is presented. The detector efficiency calibration was carried out during the analysis of cosmogenic radionuclides (60Co, 54Mn, 22Na and 26Al) in fragments of the Ko?ice meteorite. Fourteen meteorite fragments were available for the analysis with masses from 27 to 2,163 g. A reasonable agreement in the estimation of the HPGe detector efficiency was obtained using the Monte Carlo simulation GEANT 3 code, and the experimental calibration using radioactive standards mixed with iron–silica–copper powder housed in mock-ups of similar shapes as the original samples. The differences in the efficiency estimation obtained by both methods were within 10 %. It is recommended that the Monte Carlo simulation of the detector efficiency can be applied in routine analysis of gamma-ray emitters in large volume samples of regular or irregular shapes.  相似文献   

2.
GEANT4 Monte Carlo simulations have been successfully utilised to characterise a Compton suppressed broad-energy HPGe detector. The detector setup has been fully recreated in the simulation, which has been optimised to consistently reproduce the detector response. The peak efficiencies for both the primary BEGe detector and NaI(Tl) guard detectors agree with the simulated values for multiple test sources within 3 %. Compton suppression has also been simulated, with good agreement seen between the simulated and actual CSF values (<10 %) for multiple radionuclides. A secondary reference source was also simulated, which contained up to 30 radionuclides in a different geometry to that of the previous source. This showed excellent agreement with experimental data in both unsuppressed and suppressed modes of operation.  相似文献   

3.
Monte Carlo simulation is important to get efficiencies for cases where the experimental efficiencies are difficult to get such as for samples with nonstandard geometries and for large samples. In this paper, efficiency of the HPGe detector, routinely used in our lab for a variety of samples, has been computed for point source geometry and its parameters has been optimized to match MCNP and experimental efficiencies within 5% at different sample to detector distances. This optimized geometry was then validated by efficiency transfer to other geometries.  相似文献   

4.
GESPECOR: A versatile tool in gamma-ray spectrometry   总被引:1,自引:0,他引:1  
GESPECOR is a Monte Carlo based software developed for the computation of efficiency, of matrix effects and of coincidence summing effects in gamma-ray spectrometry. GESPECOR can be applied to coaxial and well-type HPGe or to Ge(Li) detectors and to various types of sources, including point, cylindrical, and spherical sources or Marinelli beakers. In this paper the structure of GESPECOR is presented and the procedures applied are described. The uncertainty of the results computed by GESPECOR is carefully analyzed. The analysis shows that GESPECOR is able to provide results with a well defined uncertainty, in a user friendly WINDOWS environment.  相似文献   

5.
An activated concrete sample was counted at different source to detector distances with CdZnTe and HPGe detectors. The experimental count rates for different radionuclides were converted to dose rate using Monte Carlo code and compared with the Measured dose rates obtained using digital survey meter. The results agreed well for both the detectors. This indicates that CdZnTe detector having a better portability but poorer resolution than HPGe detector can be effectively used for online monitoring of radioactivity as well as dose rate calculations.  相似文献   

6.
A GEANT4 based Monte Carlo simulation has been successfully utilised to calculate peak efficiency characterisations and cascade summing (true coincidence summing) corrections in two source geometries commonly used for environmental monitoring. The cascade summing corrections are compared with values generated using an existing (validated) system, and found to be in excellent agreement for all radionuclides simulated. The calculated correction factors and peak efficiencies were also tested by analysing well defined sources used in the operation of the International Monitoring System, which undertakes radionuclide monitoring for verification of the Comprehensive Nuclear-Test-Ban Treaty. All abundances of the radionuclides measured matched the values that were previously determined using proprietary software. Using GEANT4 in this way, cascade summing corrections can now be extended to complex detector models and source matrices, such as Compton Suppression systems.  相似文献   

7.
For the evaluation of coincidence summing effects for volume sources an effective total efficiency (ETE) is used instead of the common total efficiency (TE). In this paper ETE is computed by the Monte Carlo method. The differences between ETE and TE are analyzed and their origin is discussed. Measured values for the coincidence summing correction factors for a standard solution containing 152Eu in a one liter Marinelli beaker are compared with computed values obtained from appropriate values of ETE. It is shown that the procedure for the evaluation of the coincidence effects is reliable. As a consequence it can be concluded that 152Eu volume sources can be successfully used for efficiency calibration even in the case of high-efficiency detectors and close source-to-detector distances.  相似文献   

8.
Low-level gamma-ray spectrometry with large volume HPGe detectors has been widely used in analysis of environmental radionuclides. The reasons are excellent energy resolution and high efficiency that permits selective and non-destructive analyses of several radionuclides in composite samples. Although the most effective way of increasing the sensitivity of a gamma-ray spectrometer is to increase counting efficiency and the amount of the sample, very often the only possible way is to decrease the detector’s background. The typical background components of a low-level HPGe detector, not situated deep underground, are cosmic radiation (cosmic muons, neutrons and activation products), radioactivity of construction materials, radon and its progenies. A review of Monte Carlo simulations of background components of HPGe detectors, and their characteristics in coincidence and anti-Compton mode of operation are presented and discussed.  相似文献   

9.
Simulation of photon-electron transport in a CANDU reactor fuel channel using the Monte Carlo method for calculating the energy deposition in the coolant is studied. The geometry of the CANDU fuel channel is very complex so methods that make such simulations more practicable, without adversely affecting the results, are introduced. In this regard, the use of simplifying assumptions and simplified geometrical models on the performance of two different Monte Carlo codes has been compared. An ETRAN-based code (SANDYL), and the code EGS4 produced comparable results, although the former performs faster in accounting for low energy electrons. A simplified computational model is also introduced. This model is based on decoupling photon-electron transport simulations by the use of electron-energy-transfer functions. The results obtained using the model are successfully validated using the EGS4 and SANDYL codes. A significant computational speedup (about a factor of seven compared to Monte Carlo simulations) is achieved with this model.  相似文献   

10.
In the event of a radioactive disaster, one of the biggest tasks is to estimate the radiation dosage received by people to determine the actions of emergency response teams. The first and the most rapid screening method of internally contaminated people in case of an emergency response is to perform in-vivo measurements for gamma-emitters. Development of virtual gamma-ray calibration techniques will be critical for emergency invivo measurements because there are inadequate numbers of phantom types to approximate all body shapes and sizes. The purpose of this project was to find a reliable way to estimate the efficiency of gamma-systems using Monte Carlo computations, and to validate that efficiency by making measurements of a standard geometry. Two geometries, a 5-ml ampoule and a Bottle Manikin Absorption (BOMAB) phantom head, spiked with 67Ga were used as standard geometries. The radioactive objects are measured at a number of distances from a high purity germanium (HPGe) detector, and the experimental efficiency for our gamma-spectrometry system is determined. The same set of experiments was then modeled using the Monte Carlo N-Particle Transport Code (MCNP). The conclusion of this project is that computationally derived detector efficiency calibrations can be comparable to those derived experimentally from physical standards.  相似文献   

11.
In this paper, we apply the Matteoli-Mansoori empirical formula for the pair correlation function of simple fluids obeying the Lennard-Jones potential to calculate reduced self-diffusion coefficients on the basis of the modified free volume theory. The self-diffusion coefficient thus computed as functions of temperature and density is compared with the molecular dynamics simulation data and the self-diffusion coefficient obtained by the modified free volume theory implemented with the Monte Carlo simulation method for the pair correlation function. We show that the Matteoli-Mansoori empirical formula yields sufficiently accurate self-diffusion coefficients in the supercritical regime, provided that the minimum free volume activating diffusion is estimated with the classical turning point of binary collision at the mean relative kinetic energy 3k(B)T/2, where k(B) is the Boltzmann constant and T is the temperature. In the subcritical regime, the empirical formula yields qualitatively correct, but lower values for the self-diffusion coefficients compared with computer simulation values and those from the modified free volume theory implemented with the Monte Carlo simulations for the pair correlation function. However, with a slightly modified critical free volume, the results can be made quite acceptable.  相似文献   

12.
The need to determine the content of plutonium in Pu–Be neutron sources of Russian provenience arises from the administrative regulations applying to nuclear materials. The determination of a plutonium (all isotopes) amount was based on the measurement of an activity Pu-239. Gamma-ray spectrometry with semiconductor detector HPGe was applied. The determination of plutonium (all isotopes) amount was based on the measurement of Pu-239 activity by means of Gamma-ray spectrometry with semiconductor detector HPGe. Gamma lines of radionuclides Am-241, Pu-238, Pu-239 and Pu-241 were detected in spectra. Detection efficiencies were calculated by Monte Carlo method using MCNP4A code. Computations were done for several hypothetical plutonium amounts. Activities determined from peak areas of 129 and 413 keV photons emitted from Pu-239 were confronted. The right amount was established under the condition of equality of both activities.  相似文献   

13.
The GESPECOR software, initially developed for the computation of efficiency of HPGe detectors in environmental -ray spectrometry, was applied to NAA. The software is useful for the computation of efficiency and of self-attenuation and coincidence-summing corrections for common experimental conditions. A new source subroutine was implemented in GESPECOR for solving the more complex case of non-uniform sources. In this way neutron self-shielding in the activation of samples of large volume is taken into account. The dependence of the detection efficiency on the flux distribution is discussed.  相似文献   

14.
Broad-energy HPGe detectors have a useful range of 3 keV to 3 MeV, making them ideal for the assay of environmental samples. Such measurements however, are hindered by variations in the sample matrix, summing effects, and the Compton continuum. Detectors may be characterised by proprietary software in such a situation, however Monte-Carlo modelling is a useful, inexpensive alternative that also provides greater flexibility when determining the detector response and efficiency during a measurement. In the current work, a full GEANT4 model of a broad-energy HPGe detector is presented, and simulations of various samples are compared to experimental data. These are found to be accurate within 3 % at a confidence level of 95 % for energies from 30 to 3,000 keV, with greater variations below 100 keV due to an increased sensitivity to geometrical inaccuracies.  相似文献   

15.
In this paper, an empirical formula for the HPGe efficiency calibration of bulky sources in cylindrical geometry is proposed. The simple but accurate empirical formula is able to effectively predict the efficiencies of summing effect-free γ-rays from cylindrical bulky sources (within ∅30 mm×40 mm) at different source-to-detector distances. The relative difference between experimental and calculated data at 0, 20, 40 and 80 mm source-to-detector distances is smaller than 5%.  相似文献   

16.
Pencil beam algorithms used in computerized electron beam dose planning are usually described using the small angle multiple scattering theory. Alternatively, the pencil beams can be generated by Monte Carlo simulation of electron transport. In a previous work, the 4th version of the Electron Gamma Shower (EGS) Monte Carlo code was used to obtain dose distributions from monoenergetic electron pencil beam, with incident energy between 1 MeV and 50 MeV, interacting at the surface of a large cylindrical homogeneous water phantom. In 2000, a new version of this Monte Carlo code has been made available by the National Research Council of Canada (NRC), which includes various improvements in its electron-transport algorithms. In the present work, we were interested to see if the new physics in this version produces pencil beam dose distributions very different from those calculated with oldest one. The purpose of this study is to quantify as well as to understand these differences. We have compared a series of pencil beam dose distributions scored in cylindrical geometry, for electron energies between 1 MeV and 50 MeV calculated with two versions of the Electron Gamma Shower Monte Carlo Code. Data calculated and compared include isodose distributions, radial dose distributions and fractions of energy deposition. Our results for radial dose distributions show agreement within 10% between doses calculated by the two codes for voxels closer to the pencil beam central axis, while the differences are up to 30% for longer distances. For fractions of energy deposition, the results of the EGS4 are in good agreement (within 2%) with those calculated by EGSnrc at shallow depths for all energies, whereas a slightly worse agreement (15%) is observed at deeper distances. These differences may be mainly attributed to the different multiple scattering for electron transport adopted in these two codes and the inclusion of spin effect, which produces an increase of the effective range of electrons.  相似文献   

17.
Light distributions in biological tissues are summarized in simple expressions for sphewrical, cylindrical and planar geometries due to point sources, line sources and planar sources. The goal is to provide workable tools for computing light distributions that govern the amount and distribution of photochemical reactions in experimental solutions, films and biological tissues. Diffusion theory expressions are compared with Monte Carlo simulations. Analytic expressions that mimic accurate Monte Carlo simulations are presented. Application to fluorescence measurements and prediction of necrotic zones in photodynamic therapy are outlined.  相似文献   

18.
This study aimed to investigate effects of the thermoluminescent dosimeter (TLD) size and type on the absorbed dose value by using of Monte Carlo calculations. The options in creating conditions to establish the kerma approximation were also studied. The Monte Carlo N-Particle (MCNPX 2.4.0) transport code was used to design simulations. Results of this work indicate that if common mineral materials of TLDs are replaced by air and a huge volume is applied for the TLD, the accurate assessment of absorbed doses is possible while the photon energy fluence in the TLD cell is convoluted with mass energy absorption coefficients of the real TLD material. In this method the simulation run-time is strongly decreased.  相似文献   

19.
A prompt gamma-ray neutron activation analysis (PGNAA) system was used to calibrate and validate a Monte Carlo model as a proof of principle for the quantification of chlorine in soil. First, the response of an n-type HPGe detector to point sources of 60Co and 152Eu was determined experimentally and used to calibrate an MCNP4a model of the detector. The refined MCNP4a detector model can predict the absolute peak detection efficiency within 12% in the energy range of 120–1400 keV. Second, a PGNAA system consisting of a light-water moderated 252Cf (1.06 g) neutron source, and the shielded and collimated HPGe detector was used to collect prompt gamma-ray spectra from Savannah River Site (SRS) soil spiked with chlorine. The spectra were used to calculate the minimum detectable concentration (MDC) of chlorine and the prompt gamma-ray detection probability. Using the 252Cf based PGNAA system, the MDC for Cl in the SRS soil is 4400 g/g for an 1800-second irradiation based on the analysis of the 6110 keV prompt gamma-ray. MCNP4a was used to predict the PGNAA detection probability, which was accomplished by modeling the neutron and gamma-ray transport components separately. In the energy range of 788 to 6110 keV, the MCNP4a predictions of the prompt gamma-ray detection probability were generally within 60% of the experimental value, thus validating the Monte Carlo model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号