首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 446 毫秒
1.
A high performance flexible porous medium burner that can burn gaseous and liquid fuel with different type of flames(premixed and non-premixed) is proposed. The merit of the combustion within porous medium is that heat is recirculated from the combustion gas to porous medium at upstream wherein vaporization is taken place(in case of liquid fuel) or preheated(in case of gaseous fuel) before mixing with the combustion air followed by combustion within another porous medium at downstream. In a former version of the high performance flexible porous medium burner, the upstream porous medium is incorporated with a cooling system using the combustion air as a coolants to prevent thermal decomposition of fuels and thus the burner clogging caused by carbon deposit within the porous medium can be avoided. However, the cooling effect cannot be properly controlled such that the boiling point of the liquid fuel is maintained at suitable value irrespective of the volume flow rate of the combustion air,which is linearly varied with the firing rate of the burner. In particular at the lean burn condition, where high air flow rate is required with high cooling effect with porous medium. This can result in the porous medium temperature lower than the corresponding boiling point of the liquid fuel and thus evaporation of the fuel is failed and the combustion is ceased. Therefore, method of controlling the cooling air flow rate in the porous medium is proposed and studied in order to appropriately control the porous medium temperature and maintain it at above the boiling point irrespective of the combustion conditions. In this research, experimental and computation analysis are used to design the flexible porous burner(FPMB),with adjustable cooling effect. The result shows that, the new design of FPMB which has temperature in the upstream porous medium is higher than boiling point and lower than thermal decomposition temperature of fuel(kerosene) at all conditions and can be operated at a wide range of equivalence ratio without fuel decomposition and fuel non-vaporization problem.  相似文献   

2.
Because of compressibility criteria, fuel used in aeronautical combustors is liquid. Their numerical simulation therefore requires the modeling of two-phase flames, involving key phenomena such as injection, atomization, polydispersion, drag, evaporation and turbulent combustion. In the present work, particular modeling efforts have been made on spray injection and evaporation, and their coupling to turbulent combustion models in the Large Eddy Simulation (LES) approach. The model developed for fuel injection is validated against measurements in a non-evaporating spray in a quiescent atmosphere, while the evaporation model accuracy is discussed from results obtained in the case of evaporating isolated droplets. These models are finally used in reacting LES of a multipoint burner in take-off conditions, showing the complex two-phase flame structure.  相似文献   

3.
This experimental study examined a low-emission steam boiler in which the filtration combustion technology was employed. This new boiler concept is consisted of a reciprocal flow porous burner, in which a combustion wave propagates along the reactor length. The boiler’s burner is filled up by an inert porous material, which leads to a stable burning of ultra-lean fuel/air mixtures, operating below flammability limits of conventional burners. In reciprocal filtration combustion, the reaction zone travels back and forth along the length of the burner, maintaining a typical trapezoidal temperature distribution favorable to the energy extraction. Embedding heat exchangers into the ends of the porous bed results in an alternative low-emission high-efficiency boiler. The heat re-circulation inside the porous matrix and the low degree of thermal non-equilibrium between the gas and the solid phases result in ultra-low levels of CO and NOx. Over an equivalence ratio range from 0.20 to 1.0 and a gas flow velocity range from 0.2 to 0.6 m/s, burning the technical methane, the developed prototype has reached efficiencies superior to 90% and NOx and CO emission levels lower than 1.0 and 0.5 ppm, respectively.  相似文献   

4.
The interaction of turbulence, temperature fluctuation, liquid fuel transport, mixing and evaporation is studied by using Large Eddy Simulations (LES). To assess the accuracy of the different components of the methods we consider first isothermal, single phase flow in a straight duct. The results using different numerical methods incorporating dynamic Sub-Grid-Scale (SGS) models are compared with DNS and experimental data. The effects of the interactions among turbulence, temperature fluctuation, spray transport, evaporation and mixing of the gaseous fuel are studied by using different assumptions on the temperature field. It has been found that there are strong non-linear interactions among temperature-fluctuation, evaporation and turbulent mixing which require additional modeling if not full LES is used. The developed models and methods have been applied to a gas turbine burner into which liquid fuel is injected. The dispersion of the droplets in the burner is described. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Experimental Characterization of Gelled Jet A1 Spray Flames   总被引:1,自引:0,他引:1  
Gelled propellants provide energetic performance similar to conventional liquid propellants and safety during storage and handling like a solid propellant. Experiments on unconfined gelled Jet A1 spray flames and the comparison with ungelled spray flames are reported for the first time in this paper in terms of the global features, burning regimes, stability limits, visible flame height, emission spectra, natural luminosity, and CH ? chemiluminescence. Propellants were atomized by an internally impinging two-fluid atomizer, developed specifically for efficient atomization of non-Newtonian gels. Swirling and non-swirling spray flames were successfully stabilized on a burner incorporating bluff body and annular jet of combustion air over a wide range of operating parameters. Structural features of the atomizer impart high momentum to the (central) spray jet, such that the recirculation zone could be penetrated under all conditions. Long-exposure smoke and high-speed visualizations were employed to study cold flow structures and droplet-vortex interactions. Short-exposure direct and backlit imaging were used to observe global features of spray flames. Stability limits and visible flame heights were mapped for different thermal inputs, swirl numbers, and flow rates of atomizing and combustion air jets. Non-swirling stable anchored, partially blown off, and neck-blown off flames were observed. Lifted, and a transition regime, in which the flame could burn in stable and lifted mode repetitively, were observed for the swirling flames. Interactions between central and annular jets are important in these regimes, determining flame shape, symmetry, and flame height. Jet-like propagation zone determines the flame height through its dependence on momentum of spray jet. The length of this zone is affected by variations in thermal input, gas-liquid ratio, and air-fuel ratio. The gelled Jet A1 flames are remarkably shorter despite having a larger average droplet size than ungelled Jet A1. This experimental observation directly supports theoretical predictions reported in literature. These flames are more luminous than ungelled Jet A1, especially at the base and the neck regions. While, majority of the heat is released in the jet-like propagation zone for both the flames, significant heat is released in the neck zone of ungelled Jet A1 spray flame in comparison to ungelled Jet A1 spray flame due to intense turbulence and smaller droplet size.  相似文献   

6.
This study deals with the impact of the operating conditions, e.g. pressure, preheating temperature, pressure drop across the nozzle, nozzle size and stoichiometry, on the reaction zone location and spray evaporation progress in case of a lifted flame. Lifted flames are highly valued for their NOx reduction potential and for their low susceptibility to flash-back and thermo-acoustic instabilities. These advantageous features arise from the improved homogeneity of the fuel-air mixture provided to the reaction zone. One distinctive feature of the lifted flames is the presence of the so called lift-off zone located between nozzle outlet and main reaction zone. Within the lift-off zone fuel and oxidizer remain a certain time in contact and mix together prior to the onset of the combustion reaction. This leads to a more uniform heat release distribution and lowers the nitrogen oxides emissions at lean conditions by reducing the temperature spikes. In contrast to many other studies the subject of investigation was not a plain jet flame, but a modified version of the airblast nozzle, widely used in industrial applications. The nozzle was operated with liquid kerosene. As liquid fuels are easier to handle than gaseous or solid, it is expected that many efforts in the future will focus on the development of liquid fuels surrogates. Our previous investigations have shown, that the nozzle is well suited to be operated with gaseous fuels as well (Fokaides et al, J Eng Gas Turbine Power 130, 011508 2008). The position of the reaction zone was determined by means of chemiluminescence of the OH? radicals and from its location the lift-off height was derived. In addition the fuel evaporation progress was measured by means of light scattering, revealing that fuel droplets and main reaction zone are well separated. It was found that the operating conditions have a versatile impact on the length of the lift-off zone and spray cone and thus on the degree of pre-evaporation and premixing. Thus, it may be concluded, that through a proper choice of operating conditions and combustor size a desired lift-off height can be adjusted in accordance with criteria, like available space, required emission levels etc.  相似文献   

7.
Large-Eddy Simulations (LES) of an evaporating two-phase flow in an experimental burner are investigated. Two different numerical approaches for the simulation of the dispersed phase are coupled to the same gaseous solver: a mesoscopic Eulerian method and a Lagrangian particle tracking technique. The spray is represented by a single droplet size owing to the locally monodisperse formulation of the employed mesoscopic Eulerian approach. Both approaches use the same drag and evaporation models. They do not take into account the atomization process and a simplified injection model is applied instead. The presented methodology, referred as FIM-UR (Fuel Injection Method by Upstream Reconstruction) defines injection profiles for the monodisperse spray produced by a pressure-swirl atomizer. It is designed so as to ensure similar spray characteristics for both approaches and allows for a direct comparison between them. After a validation of the purely gaseous flow in the burner, liquid-phase dynamics and droplet dispersion are qualitatively and quantitatively evaluated for the Eulerian and Lagrangian simulations. Results obtained for both approaches are in very good agreement and compare reasonably with experiments, indicating that simplified injection methods are appropriate for the simulation of realistic combustor geometries.  相似文献   

8.
Evaporating Diesel sprays are studied by laser Rayleigh scattering measurements in an optically accessible high-pressure/high-temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. n-Decane is injected into the vessel using a state-of-the-art near-production three-hole nozzle. Global images of the distributions of the liquid and vapor phases of the injected fuel are obtained using a combined Schlieren and Mie scattering setup. More details about the evaporation are revealed when the spray is illuminated by a laser light sheet: laser light can be scattered by molecules in the gas phase (Rayleigh scattering) or comparably large fuel droplets (Mie scattering). The former is seen in regions where the fuel has completely evaporated, and the latter is dominant in regions with high droplet concentrations. Studying the polarization of the signal light allows the distinction of three different regions in the spray that are characterized by a moderate, low or negligible concentration of liquid fuel droplets. The characteristics of fuel evaporation are investigated for different observation times after the start of injection, chamber conditions and injection pressures. For the quantification of the fuel concentration measurements based on Rayleigh scattering, a calibration method that uses propane as a reference gas is presented and tested. At high ambient temperatures, the accuracy of the concentration measurements is limited by pyrolysis of the fuel molecules. This paper was originally presented at the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 2008.  相似文献   

9.
为探究煤油液滴不同初始直径对气液两相旋转爆轰发动机流场的影响,假设初始注入的煤油液滴具有均匀直径,考虑雾化破碎、蒸发等过程,建立了非定常两相爆轰的Eulerian-Lagrangian模型,进行了液态煤油/高温空气爆轰的非预混二维数值模拟。结果表明:在初始液滴直径为1~70μm的工况范围,燃烧室内均形成了单个稳定传播的旋转爆轰波;全局当量比为1时,爆轰波前的空气区域大于液滴煤油的蒸气区域,导致波前燃料空气混合不均匀,波前均存在富油区和贫油区,两相速度差导致分离出的空气形成低温条带;当煤油液滴的初始直径较小时,波前的反应物混合过程主要受蒸发的影响,爆轰波可稳定传播;当直径减小至1μm时,煤油液滴在入口处即蒸发,旋转爆轰波表现为气相传播的特性,爆轰波结构平整;当煤油液滴的初始直径较大时,波前的反应物混合过程主要受液滴破碎的影响;对于相同的燃料质量流量,在不同初始煤油液滴直径工况下,煤油液滴最大的停留时间均占爆轰波传播时间尺度的80%以上;爆轰波前燃料预蒸发为气相的占比越高,爆轰波的传播速度越高;初始液滴直径为10~70μm的工况范围内,爆轰波的速度随初始直径的增大先升高后降低。  相似文献   

10.
High efficiency, marginal pollutant emissions and low fuel consumption are desirable standards for modern combustion devices. The porous burner technology is a modern type of energy conversion with a strong potential to achieve these standards. However, due to the solid ceramic framework investigation of the thermodynamic properties of combustion, for example temperature, is difficult. The combustion process inside the ceramic structure of a porous burner was experimentally investigated by coherent anti-Stokes Raman spectroscopy (CARS). In this work, we present measurements using dual-pump dual-broadband CARS (DP-DBB-CARS) of temperature and species concentrations inside the reaction and flue gas zone of a porous media burner. Improvements to the setup and data evaluation procedure in contrast to previous measurements are discussed in detail. The results at varied thermal power and stoichiometry are presented. In addition, measurements at a range of radial positions inside a pore are conducted and correlated with the solid structure of the porous foam, which was determined by X-ray computer tomography.  相似文献   

11.
A possible solution to ensure the stability of lean premixed flames over an extended operational range is to provide enhanced heat recirculation by employing porous inert material. A potential application of the porous burner concept is the generation of the pilot flames based on lean premixed combustion which is a prerequisite for ultra low NOx emission. For the optimization of the porous burner an experimental study investigating flame stability and emissions was conducted. In particular axial concentration profiles of the stable species and temperature within the porous burner reaction zone are presented. Furthermore the surface temperature of the burner having a 10 PPI SiSiC material was measured for various operating conditions using two colour pyrometry.  相似文献   

12.
The hydrodynamics of concurrent gas-liquid downflow through a porous media of fixed bed reactor has been studied experimentally in a range of trickling flow rates. A pilot bed is packed with industrial spherical and extrudate trilobe catalysts. The industrial trilobe catalysts are packed in a bed using two different methods: random close or dense packing and random sock packing. The experiments are performed for single phase in the cases of wet and dry packed beds and for two-phase flow conditions. The comparisons of pressure drops as well as liquid holdup are carried out for the above three different porous media, random close, dense packing and random sock packing. It is shown that the pressure drop of the dense loaded bed is higher than that of spherical particles which have approximately the same porosity. The results also revealed that the bed porosity, shape and contact points of the loaded catalyst have significant effects on the dynamic liquid holdup of the TBRs. Finally, a new correlation was developed for dynamic liquid holdup and pressure drop calculation for trilobe dense and sock catalyst beds and beds which are loaded with spherical particles.  相似文献   

13.
14.
This work aims to understand the phenomena that occur in a combustion chamber where multi-component fuel droplets are injected. Many evaporation models exist but the influence of turbulence on spray vaporization is not yet well understood. This study gives a useful database to improve these models. The objective of the work is to measure the dispersion and the evaporation of bi-component (octane/3-pentanone) droplets and the resulting vapor mixing in a well-known, heated, highly turbulent channel flow. The carrier flow shows high turbulence levels, flat profiles for the mean velocity and the velocity fluctuations. The injected droplets have a large variety of behaviors due to the large polydispersion and to the turbulence. The evolution of 3-pentanone liquid concentration, mass flux, and droplet clusters are described. Mean concentration, fluctuations of concentration, and mixing of the vapor phase are characterized.  相似文献   

15.
在JP10和煤油点火特性激波管实验的基础上,实验研究了硅烷对这两种典型高碳数碳氢燃 料点火特性的影响. 在预加热到70 C的激波管上,采用缝合运行条件获得了近7ms 的实验时间,将实验延伸至低温区. 采用气相色谱分析和高精度真空仪直接测定压力相结合 的方法,确定了燃料气相浓度,解决了高碳数碳氢燃料点火激波管实验时由于管壁吸附影响 燃料气相浓度确定的困难. 实验记录了点火过程中OH自由基发射强度变化,并作为判断点 火发生的标志. 实验温度范围880~1800K, 压力范 围0.16~0.53\,MPa. 当硅烷加入量约为燃料的10%~15%(摩尔比), 质量比为2%~3%, 观测到明显的点火促进作用. 该研究对超燃研究中发动机设计、 燃料选择等方面具有直接的工程意义,也可用于检验燃烧化学动力学模型的合理性.  相似文献   

16.
Accurate modelling of spray combustion process is essential for efficiency improvement and emissions reduction in practical combustion engines. In this work, both unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and large eddy simulations (LES) are performed to investigate the effects of spray and turbulence modelling on the mixing and combustion characteristics of an n-heptane spray flame in a constant volume chamber at realistic conditions. The non-reacting spray process is first simulated with URANS to investigate the effects of entrainment gas-jet model on the penetration characteristics and fuel vapor distributions. It is found that the droplet motion near the nozzle has significant influence on the fuel vapor distribution, while the liquid penetration length is controlled by the evaporation process and insensitive to gas-jet model. For the case considered, both URANS with the gas-jet model and large eddy simulations can properly predict the vapor penetration. For the combustion characteristics, it is found that LES yields better predictions in the global combustion characteristics. The URANS with gas jet model yields a comparable flame length and lift-off-length (LOL) to LES, but results in a larger ignition delay time compared to the experimental data. Another focus of this work is to qualify the convergence characteristics of the dynamic adaptive chemistry (DAC) method in these transient combustion simulations, where DAC is applied to reduce the mechanism locally and on-the-fly to accelerate chemistry calculations. The instantaneous flame structures and global combustion characteristics such as ignition delay time, flame lift-off length and emissions are compared between simulations with and without DAC. For URANS, good agreements are observed both on instantaneous flame structures and global characteristics. For LES, it is shown that the errors incurred by DAC are small for scatter distributions in composition space and global combustion characteristics, while they may significantly affect instantaneous flame structures in physical space. The study reveals that for DAC application in transient simulations, global or statistic information should be used to assess the accuracy, such as manifolds in composition space, conditional quantities and global combustion characteristics. For the cases investigated, a speed-up factor of more than two is achieved by DAC with a 92-species skeletal mechanism with less than 0.2 % and 3.0 % discrepancy in ignition delay and LOL, respectively.  相似文献   

17.
This paper reports a two-dimensional numerical prediction of premixed methane-air combustion in inert porous media burner by using of four multi-step mechanisms: GRI-3.0 mechanism, GRI-2.11 mechanism and the skeletal and 17 Species mechanisms. The effects of these models on temperature, chemical species and pollutant emissions are studied. A two-dimensional axisymmetric model for premixed methane-air combustion in porous media burner has developed. The finite volume method has used to solve the governing equations of methane-air combustion in inert porous media burner. The results indicate that the present four models have the same accuracy in predicting temperature profiles and the difference between these profiles is not more than 2 %. In addition, the Gri-3.0 mechanism shows the best prediction of NO emission in comparison with experimental data. The 17 Species mechanism shows good agreement in prediction of temperature and pollutant emissions with GRI-3.0, GRI-2.11 and the skeletal mechanisms. Also the effects of wall temperature on the gas temperature and mass fraction of species such as NO and CH4 are studied.  相似文献   

18.
The present paper develops a general mathematical model with some improvements in mass, momentum and energy equations, which introduce more transport mechanisms to simulate simultaneous transfer of heat and mass in the porous media unsaturated with liquid. Numerical calculation results in two-dimension are obtained for the vertical packed bed with its right opening surface exposing to atmospherical environment. The calculating data can demonstrate the cooling effect of the water evaporation for the bed if it is used as a cooling wall of building for room air-conditioning in the hot and dry climate.  相似文献   

19.
Acetone droplet characteristics in reacting and non-reacting turbulent flow are predicted and compared to experimental data. Investigations are conducted to study the effects of surrounding environment properties on the velocities, dispersion, and evaporation of a relatively volatile spray fuel that featured a wide range of Stokes numbers. The simulations are performed in the framework of Reynolds Averaged Navier Stokes equations along with the Eulerian-Lagrangian approach in which 12 different classes of the dispersed phase. The phase transition is modeled by the Langmuir-Knudsen law that accounts for non equilibrium effects based on a consistent determination of the molar mass fraction on the droplet surfaces. For the droplet dispersion, the Markov sequence model is improved by adding a correction drift term to the fluid fluctuation velocity at the parcel position along the droplet trajectory. This correction term aimed at accounting for the non-homogeneity effects in the turbulent flow. The combustion is captured using the Bray-Moss-Libby model that is extended to account for the partially premixed spray combustion. The chemistry is described with the flamelet model using a recent detailed reaction mechanism that involves 84 species and 409 reactions for which the Lewis number is not set to the unity. Mean droplet velocities for reacting and non-reacting test cases are compared with experimental data. Good agreement is observed. The spray is interacting with the nozzle edge developing new classes and relatively dense region. Hence the RMS-velocities close to the nozzle exit plan demonstrate discrepancies. The droplets group combustion effect is found to be important in the modeling of the burning velocity which influences the flame propagation. Reasonable agreements between the numerical and the experimental results are also observed in the spray flux and temperature profiles.  相似文献   

20.
Airblast atomizers are especially useful and commonplace in liquid fuel combustion applications. However, the spray formation processes, the droplet dynamics and the final drop size distributions are still not sufficiently understood due to the coupled gas-liquid interactions and turbulence generation. Therefore, empirical and semi-empirical approaches are typically used to estimate the global spray parameters. To develop a physical understanding of the spray evolution, a plain-jet airblast atomizer was investigated in an atmospheric spray rig using the phase-Doppler technique. The simultaneous drop size and axial and radial velocity components were measured on radial traverses across the spray at various axial distances from the nozzle for a range of atomizing pressures. The droplet turbulent and mean kinetic energies were found to be proportional to the atomizing pressure. Hence, the scatter of the radial motion of the droplets increased with the atomizing pressure. A droplet stability analysis was performed to locate the regions characterized by ongoing secondary atomization. The volume-to-surface diameter, D32, of the fully developed spray was compared with estimates provided by five published formulae. The role of liquid viscosity, hence the Ohnesorge number, was found to be negligible in the investigated regime. Three commonly used size distribution functions were fitted to the measured data to analyze their dependence on the atomizing pressure. The Gamma distribution function was found to give the best approximation to the atomization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号