首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper contains an analysis of the stress distribution in a long circular cylinder of elastic material containing a penny-shaped crack when it is deformed by the application of a uniform shearing stress. The crack with its center on the axis of the cylinder lies on the plane perpendicular to that axis, and the cylindrical surface is stress-free. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of Fredholm integral equations of second kind. These are solved numerically, and the percentage increase in the stress intensity factor due to the effect of the finite radius of the cylinder is presented in graphical form for various proximity ratios.  相似文献   

2.
Summary An axi-symmetric stress analysis of a transversely isotropic, short hollow cylinder subjected to an outer band load is presented in a series form. The generalized Elliott's solution is used for the analysis. The solution consists of five independent potential functions which yield two kinds of elasticity solution. The boundary conditions for the shearing stress on the four surfaces are exactly satisfied. Other boundary conditions are numerically satisfied with the aid of a Fourier series expansion or a Fourier-Bessel series expansion. Numerical results for stresses in magnesium and cadmium crystals, as examples of transversely isotropic materials, and in an isotropic material are illustrated. The effect of anisotropy on the stresses is investigated by comparison with the stresses in the isotropic material.
Spannungen in einem transversal-isotropen, kurzen Hohlzylinder unter einer äußeren Bandlast
Übersicht Vorgestellt wird eine axialsymmetrische Spannungsanalyse mittels Reihen für einen transversalisotropen, kurzen Hohlzylinder unter einer äußeren Bandlast. Für die Analyse wird die verallgemeinerte Elliottsche Lösung benutzt. Die Lösung besteht aus fünf unabhängigen Potentialen, welche zwei Arten der Elastizitätslösung abgeben. Die Randbedingungen der Schubspannung auf den vier Flächen werden genau erfüllt. Die anderen Randbedingungen werden durch eine Fouriersche Reihenentwicklung oder eine Fourier-Besselsche Reihenentwicklung numerisch erfüllt. Die numerischen Resultate der Spannungen in einem Magnesiumkristall und einem Kadmiumkristall als Beispiele transversal-isotroper Materialien und in einem isotropen Material werden illustriert. Der Einfluß der Anisotropie auf die Spannungen wird durch Vergleich mit den Spannungen im isotropen Material untersucht.
  相似文献   

3.
This paper contains an analysis of the stress distribution in a long circular cylinder of isotropic elastic material with a circumferential edge crack when it is deformed by the application of a uniform shearing stress. The crack with its center on the axis of the cylinder lies on the plane perpendicular to that axis, and the cylindrical surface is stress-free. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of singular integral equations. This pair of singular integral equations is solved numerically, and the stress intensity factor due to the effect of the crack size is tabulated.  相似文献   

4.
Although vortex-induced vibration (VIV) has been extensively studied, much of existing literature deals with uniform flow in the absence of a boundary. The VIV flow field of a structure close to a boundary generally remains unexplored, but it can have important engineering implications, such as pipeline scour if the boundary is an erodible seabed. In this paper, laboratory experiments are performed to investigate the flow characteristics of an elastically mounted circular cylinder undergoing VIV, and a rigid plane boundary is considered to simplify the problem. The initial gap-to-diameter ratio is fixed at 0.8, and six different reduced velocities are considered. The velocity field is measured using a high resolution particle image velocimetry (PIV) system, which has several advantages over traditional PIV systems, including high sampling rate and the ability to mitigate scatter of laser light near the boundary, allowing accurate measurements at the viscous sublayer. This paper presents the vibration amplitude and oscillation frequency for different Vr; in addition, the mean velocity field, turbulence characteristics, vortex behavior, gap flow velocity, and normal/shear stresses on the boundary were measured/calculated, leading to new insights on the flow field behavior.  相似文献   

5.
The flow around a circular cylinder placed close to a horizontal plane wall was investigated experimentally. Fluctuations of lift and drag of the cylinder and wall interference effects were studied in terms of the gap height between the cylinder and wall and the thickness of the turbulent wall boundary layer. The fluctuating fluid forces acting on the cylinder sharply increased, and the regular vortex shedding, i.e. Kárman vortex streets, started to form beyond a critical gap height. The formation of Kárman vortex streets was abruptly interrupted when the bottom of the cylinder came in contact with the outer layer of the boundary layer developed on the wall. This critical gap height correlated well with the thickness of the boundary layer.  相似文献   

6.
7.
8.
An analytic solution to the axisymmetric problem of a long, radially polarized, hollow cylinder composed of functionally graded piezoelectric material (FGPM) rotating about its axis at a constant angular velocity is presented. For the case that electric, thermal and mechanical properties of the material obey different power laws in the thickness direction, distributions for radial displacement, stresses and electric potential in the FGPM hollow cylinder are determined by using the theory of electrothermoelasticity. Some useful discussions and numerical examples are presented to show the significant influence of material nonhomogeneity, and adopting suitable graded indexes and applying suitable geometric size and rotating velocity ω may optimize the rotating FGPM hollow cylindrical structures. This will be of particular importance in modern engineering application.  相似文献   

9.
Summary This paper is concerned with the two-dimensional dynamic thermal stress problems in an infinitely long circular cylinder subjected to two kinds of asymmetric heatings at the lateral surface, assuming that the cylinder is initially undeformed and at zero temperature. The equations of motion including the inertia terms are expressed in terms of the dilatation and rotation and solved by applying the Fourier-cosine, Fouriersine transforms and the Laplace transform to the resulting differential equations. The solutions to the dynamic thermal displacements and stresses in the cylinder valid for the short period after the asymmetric heatings are obtained and the numerical calculations are carried out for the thermal boundary condition of the prescribed temperature distribution.
Dynamische Wärmespannungen in Kreiszylindern bei asymmetrischer Erwärmung
übersicht Es werden dynamische WÄrmespannungsprobleme für einen unendlich langen Kreiszylinder untersucht, der zwei verschiedenen Arten von ErwÄrmung der OberflÄche unterworfen ist. Die Bewegungsgleichungen schlie\en die TrÄgheitsterme ein; sie werden in der Dilatation und der Rotation geschrieben und mit Hilfe von Fourier- und Laplace-Transformationen gelöst. Asymptotische Lösungen für kurze Zeiten werden ebenfalls hergeleitet, und numerische Ergebnisse werden grafisch dargestellt.
  相似文献   

10.
The present investigation is concerned with the effect of rotation on an infinite circular cylinder subjected to certain boundary conditions.An analytical procedure for evaluation of thermal stresses,displacements,and temperature in rotating cylinder subjected to thermal load along the radius is presented.The dynamic thermal stresses in an infinite elastic cylinder of radius a due to a constant temperature applied to a variable portion of the curved surface while the rest of surface is maintained at zero temperature are discussed.Such situation can arise due to melting of insulating material deposited on the surface cylinder.A solution and numerical results are obtained for the stress components,displacement components,and temperature.The results obtained from the present semi-analytical method are in good agreement with those obtained by using the previously developed methods.  相似文献   

11.
This paper contains an exact solution for the stresses arising from torsion of an elastic circular cylinder with a prolate spheroidal cavity. The solution, which is represented as a combination of a solution that is regular outside the cavity and a solution regular in the solid infinite circular cylinder, is deduced with the aid of a harmonic displacement potential. The two harmonic functions needed are given by simple expressions referred to cylindrical and prolate spheroidal coordinates. The boundary conditions on the surfaces of the cylinder and of the cavity are satisfied by using the relations between cylindrical and prolate spheroidal harmonics. Numerical results are presented for different shapes and sizes of the cavity, and the ensuing stress distribution in the neighborhood of the cavity is illustrated graphically.  相似文献   

12.
13.
Stress and deformation analysis of the simple shear at finite strain of a strain-hardening elastoplastic hollow circular cylinder is given. Both isotropic and anistotropic hardening models are considered. In the case of isotropic hardening, there is a closed from analytical solution. No normal stresses exist in this case. Purely kinematic hardening with a Mises-type yield condition is utilized as a model of anisotropic hardening. Conventional (average) spin is taken to construct the objective Jaumann derivative needed in the structure of the corresponding constitutive laws. Governing partial differential equations are derived and solved numerically to give stress and deformation distribution following the advance of plastic flow. The extent or range of the appropriateness of the considered constitutive model is also established.  相似文献   

14.
A circular system is a mechanical system subjected to potential forces and positional nonconservative forces (circular forces). The latter linearly depend on the coordinates and are characterized by a skew-symmetric matrix. The influence of linear dissipative forces on the stability of a circular system is ambiguous: on the one hand, they can stabilize a stable circular system (making it asymptotically stable); on the other hand, they can destabilize it [1–4]. The action of linear dissipative forces on a circular system results in the so-called destabilization paradox: the stability threshold decreases by a finite value.A detailed survey of this phenomenon can be found in [5]. The destabilization effect is also preserved under the action of nonlinear dissipative forces. The influence of these forces on the stability of the Ziegler pendulum with a tracking force was studied in [6]. It was shown that the critical value of the tracking force decreases by a finite value. A similar effect was discovered in the analysis of a continual system in [7].In the present paper, we study how nonlinear dissipative forces affect the stability of the equilibrium of a circular mechanical system with two degrees of freedom. The stability problem is solved without any references to specific mechanical systems. The results are used to analyze the stability of a gimbal gyro with allowance for dry friction in the rotor bearings.  相似文献   

15.
We consider the Saint-Venant torsion of a cylindrical rod of a circular cross section which is filled up by an assemblage of composite circular cylinders. The constituent cylinders consist of a core and a coating both of which are cylindrically orthotropic with the volume fraction of the core being the same in every composite cylinder. The described microstructure is the composite cylinder assemblage of Hashin and Rosen [J. Appl. Mech. 29 (1964) 143] which is now subjected to torsion. The main results are (a) the warping function on the lateral surface of the host rod is zero, (b) an exact expression for the torsional rigidity of the host rod is derived which depends on the size distribution of the composite cylinders but not on their position and (c) there are two circumstances in which the torsional rigidity becomes size distribution independent: The first one is that in which the sizes of the composite cylinders are much smaller than the size of the host rod; the second one is that in which a certain specific relation holds between the properties of the composite cylinder and the volume fraction of the core. If the coating disappears and the core is cylindrically orthotropic, we get the configuration of a polycrystalline rod. Simple bounds for the torsional rigidity of the constructed composite rod are obtained.  相似文献   

16.
17.
18.
An experimental study of the flow around a cylinder with a single straight perturbation was conducted in a wind tunnel. With this bluff body, positioned in a uniform crossflow, the vortex shedding frequency and other flow characteristics could be manipulated.The Strouhal number has been shown to be a function of the perturbation angular position, p , as well as the perturbation size and Reynolds number. As much as a 50% change in Strouhal number could be achieved, simply by changing p by 1°. The perturbation size compared to the local boundary layer thickness, , was varied from approximately 1 to about 20 . The Reynolds number was varied from 10,000 to 40,000. For perturbation sizes approximately 5 to 20 and Reynolds numbers of 20,000 to 40,000, a consistent Strouhal number variation with p was observed.A detailed investigation of the characteristic Strouhal number variation has shown that varying p had a significant influence on the boundary layer separation and transition to turbulence. These significant changes occurring in the boundary layer have been shown to cause variations in the spacing between the shear layers, base pressure, drag, lift, and the longitudinal spacing between the vortices in the vortex street.List of Symbols a longitudinal spacing of vortices in the vortex street - C d drag coefficient - C dc drag coefficient corrected for blockage effect - C l lift coefficient - C p pressure coefficient, p i p /q - C pb base pressure coefficient - C pbc base pressure coefficient corrected for blockage effect - d perturbation diameter - d * spacing between the shear layers; defined as conditionally averaged spacing between points in the shear layers corresponding to 0.99u max/U - D cylinder diameter; diameter of the circumscribing circle for a cable - f v vortex shedding frequency - H wind tunnel test section cross-sectional width - L spanwise length of the cylinder - p i tap pressure - p free stream static pressure - q free stream dynamic pressure - Re Reynolds number based on cylinder diameter - rms root-mean-square - S Strouhal number, f v D/U - S max maximum value of S - S min minimum value of S - t time - u c vortex convection velocity - u max maximum velocity in the shear layer - U free stream velocity - U c free stream velocity, corrected for blockage effect - x streamwise dimension referenced from the back of the cylinder - z lateral wake dimension, i.e., perpendicular to the free stream velocity vector and cylinder axis, referenced from the cylinder axis - x spacing between two hot wire probes aligned streamwise - phase difference between two hot wire probes aligned streamwise - boundary layer thickness - angle from stagnation point in degrees - p perturbation angular position - b p where S drops back to about the S of a cylinder - c critical angle, angular position where S drops steeply with 1° change in - m p where S was minimum - r p after S recovers from drop in value - t p where S starts to increase from about the S of a cylinder  相似文献   

19.
20.
Two- and three-dimensional numerical simulations of the flow around two circular cylinders in tandem arrangements are performed. The upstream cylinder is fixed and the downstream cylinder is free to oscillate in the transverse direction, in response to the fluid loads. The Reynolds number is kept constant at 150 for the two-dimensional simulations and at 300 for the three-dimensional simulations, and the reduced velocity is varied by changing the structural stiffness. The in-line centre-to-centre distance is varied from 1.5 to 8.0 diameters, and the results are compared to that of a single isolated flexible cylinder with the same structural characteristics, m?=2.0 and ζ=0.007. The calculations show that significant changes occur in the dynamic behaviour of the cylinders, when comparing the flow around the tandem arrangements to that around an isolated cylinder: for the tandem arrangements, the lock-in boundaries are wider, the maximum displacement amplitudes are greater and the amplitudes of vibration for high reduced velocities, outside the lock-in, are very significant. The main responsible for these changes appears to be the oscillatory flow in the gap between the cylinders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号