首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MP2 ab initio quantum chemistry methods were utilized to study the halogen‐bond and pnicogen‐bond system formed between PH2X (X = Br, CH3, OH, CN, NO2, CF3) and BrY (Y = Br, Cl, F). Calculated results show that all substituent can form halogen‐bond complexes while part substituent can form pnicogen‐bond complexes. Traditional, chlorine‐shared and ion‐pair halogen‐bonds complexes have been found with the different substituent X and Y. The halogen‐bonds are stronger than the related pnicogen‐bonds. For halogen‐bonds, strongly electronegative substituents which are connected to the Lewis acid can strengthen the bonds and significantly influenced the structures and properties of the compounds. In contrast, the substituents which connected to the Lewis bases can produce opposite effects. The interaction energies of halogen‐bonds are 2.56 to 32.06 kcal·mol?1; The strongest halogen‐bond was found in the complex of PH2OH???BrF. The interaction energies of pnicogen‐bonds are in the range 1.20 to 2.28 kcal·mol?1; the strongest pnicogen‐bond was found in PH2Br???Br2 complex. The charge transfer of lp(P) ? σ*(Br? Y), lp(F) ? σ*(Br? P), and lp(Br) ? σ*(X? P) play important roles in the formation of the halogen‐bonds and pnicogen‐bonds, which lead to polarization of the monomers. The polarization caused by the halogen‐bond is more obvious than that by the pnicogen‐bond, resulting in that some halogen‐bonds having little covalent character. The symmetry adapted perturbation theory (SAPT) energy decomposition analysis showes that the halogen‐bond and pnicogen‐bond interactions are predominantly electrostatic and dispersion, respectively.  相似文献   

2.
Ab initio MP2/aug′‐cc‐pVTZ calculations are used to investigate the binary complexes H2XP:HF, the ternary complexes H2XP:(FH)2, and the quaternary complexes H2XP:(FH)3, for X=CH3, OH, H, CCH, F, Cl, NC, and CN. Hydrogen‐bonded (HB) binary complexes are formed between all H2XP molecules and FH, but only H2FP, H2ClP, and H2(NC)P form pnicogen‐bonded (ZB) complexes with FH. Ternary complexes with (FH)2 are stabilized by F?H???P and F?H???F hydrogen bonds and F???P pnicogen bonds, except for H2(CH3)P:(FH)2 and H3P:(FH)2, which do not have pnicogen bonds. All quaternary complexes H2XP:(FH)3 are stabilized by both F?H???P and F?H???F hydrogen bonds and P???F pnicogen bonds. Thus, (FH)2 with two exceptions, and (FH)3 can bridge the σ‐hole and the lone pair at P in these complexes. The binding energies of H2XP:(FH)3 complexes are significantly greater than the binding energies of H2XP:(FH)2 complexes, and nonadditivities are synergistic in both series. Charge transfer occurs across all intermolecular bonds from the lone‐pair donor atom to an antibonding σ* orbital of the acceptor molecule, and stabilizes these complexes. Charge‐transfer energies across the pnicogen bond correlate with the intermolecular P?F distance, while charge‐transfer energies across F?H???P and F?H???F hydrogen bonds correlate with the distance between the lone‐pair donor atom and the hydrogen‐bonded H atom. In binary and quaternary complexes, charge transfer energies also correlate with the distance between the electron‐donor atom and the hydrogen‐bonded F atom. EOM‐CCSD spin‐spin coupling constants 2hJ(F–P) across F?H???P hydrogen bonds, and 1pJ(P–F) across pnicogen bonds in binary, ternary, and quaternary complexes exhibit strong correlations with the corresponding intermolecular distances. Hydrogen bonds are better transmitters of F–P coupling data than pnicogen bonds, despite the longer F???P distances in F?H???P hydrogen bonds compared to P???F pnicogen bonds. There is a correlation between the two bond coupling constants 2hJ(F–F) in the quaternary complexes and the corresponding intermolecular distances, but not in the ternary complexes, a reflection of the distorted geometries of the bridging dimers in ternary complexes.  相似文献   

3.
Two series of isostructural C3‐symmetric Ln3 complexes Ln3 ? [BPh4] and Ln3 ? 0.33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino‐bis(phenol) ligand. X‐ray studies reveal that LnIII ions are connected by one μ2‐phenoxo and two μ3‐methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal‐prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self‐consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To reduce the electronic repulsion from the coordinating oxygen atom with the shortest Dy?O distance, the local magnetic moments are oriented almost perpendicular to the Dy3 plane, thus leading to a paramagnetic ground state. CASSCF plus restricted active space state interaction (RASSI) calculations also show that the ground and first excited state of the DyIII ions are separated by approximately 150 and 177 cm?1, for Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6], respectively. As expected for these large energy gaps, Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6] exhibit, under zero direct‐current (dc) field, thermally activated slow relaxation of the magnetization, which overlap with a quantum tunneling relaxation process. Under an applied Hdc field of 1000 Oe, Dy3 ? [BPh4] exhibits two thermally activated processes with Ueff values of 34.7 and 19.5 cm?1, whereas Dy3 ? 0.33[Dy(NO3)6] shows only one activated process with Ueff=19.5 cm?1.  相似文献   

4.
We report the synthesis and X‐ray characterization of the N6‐benzyl‐N6‐methyladenine ligand (L) and three metal complexes, namely [Zn(HL)Cl3]·H2O ( 1 ), [Cd(HL)2Cl4] ( 2 ) and [H2L]2[Cd3(μ‐L)2(μ‐Cl)4Cl6]·3H2O ( 3 ). Complex 1 consists of the 7H‐adenine tautomer protonated at N3 and coordinated to a tetrahedral Zn(II) metal centre through N9. The octahedral Cd(II) in complex 2 is N9‐coordinated to two N6‐benzyl‐N6‐methyladeninium ligands (7H‐tautomer protonated at N3) that occupy apical positions and four chlorido ligands form the basal plane. Compound 3 corresponds to a trinuclear Cd(II) complex, where the central Cd atom is six‐coordinated to two bridging μ‐L and four bridging μ‐Cl ligands. The other two Cd atoms are six‐coordinated to three terminal chlorido ligands, to two bridging μ‐Cl ligands and to the bridging μ‐L through N3. Essentially, the coordination patterns, degree of protonation and tautomeric forms of the nucleobase dominate the solid‐state architectures of 1 – 3 . Additionally, the hydrogen‐bonding interactions produced by the endocyclic N atoms and NH groups stabilize high‐dimensional‐order supramolecular assemblies. Moreover, energetically strong anion–π and lone pair (lp)–π interactions are important in constructing the final solid‐state architectures in 1 – 3 . We have studied the non‐covalent interactions energetically using density functional theory calculations and rationalized the interactions using molecular electrostatic potential surfaces and Bader's theory of atoms in molecules. We have particularly analysed cooperative lp–π and anion–π interactions in 1 and π+–π+ interactions in 3 .  相似文献   

5.
The C?H???Y (Y=hydrogen‐bond acceptor) interactions are somewhat unconventional in the context of hydrogen‐bonding interactions. Typical C?H stretching frequency shifts in the hydrogen‐bond donor C?H group are not only small, that is, of the order of a few tens of cm?1, but also bidirectional, that is, they can be red or blue shifted depending on the hydrogen‐bond acceptor. In this work we examine the C?H???N interaction in complexes of 7‐azaindole with CHCl3 and CHF3 that are prepared in the gas phase through supersonic jet expansion using the fluorescence depletion by infra‐red (FDIR) method. Although the hydrogen‐bond acceptor, 7‐azaindole, has multiple sites of interaction, it is found that the C?H???N hydrogen‐bonding interaction prevails over the others. The electronic excitation spectra suggest that both complexes are more stabilized in the S1 state than in the S0 state. The C?H stretching frequency is found to be red shifted by 82 cm?1 in the CHCl3 complex, which is the largest redshift reported so far in gas‐phase investigations of 1:1 haloform complexes with various substrates. In the CHF3 complex the observed C?H frequency is blue shifted by 4 cm?1. This is at variance with the frequency shifts that are predicted using several computational methods; these predict at best a redshift of 8.5 cm?1. This discrepancy is analogous to that reported for the pyridine‐CHF3 complex [W. A. Herrebout, S. M. Melikova, S. N. Delanoye, K. S. Rutkowski, D. N. Shchepkin, B. J. van der Veken, J. Phys. Chem. A­ 2005 , 109, 3038], in which the blueshift is termed a pseudo blueshift and is shown to be due to the shifting of levels caused by Fermi resonance between the overtones of the C?H bending and stretching modes. The dissociation energies, (D0), of the CHCl3 and CHF3 complexes are computed (MP2/aug‐cc‐pVDZ level) as 6.46 and 5.06 kcal mol?1, respectively.  相似文献   

6.
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.  相似文献   

7.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

8.
In this paper we report on the interactions of the ionic liquid 1‐ethyl‐3‐methylimidazolium trifluoromethylsulfonate ([EMIm]TfO) with water and the solvation of zinc ions in neat [EMIm]TfO and [EMIm]TfO–water mixtures investigated by FTIR and Raman spectroscopy. The structures and physicochemical properties of the [EMIm]TfO–water mixtures are strongly dependent on the interaction between cations, anions, and water. The structure was changed from ionic‐liquid‐like to water‐like solutions upon addition of water. In addition, zinc salts can precipitate in 0.2 M Zn(TfO)2/[EMIm]TfO upon addition of 10 % (v/v) water, presumably as a result of polarity change of the solution. The average coordination number of TfO? per zinc ion calculated from Raman spectra is 3.8 in neat [EMIm]TfO, indicating that [Zn(TfO)4]2?, and [Zn(TfO)3]? complexes are present in the solution. However, in the presence of water, water interacts preferentially with the zinc ions, leading to aqueous zinc species. The solvation of zinc ions in 1‐butyl‐1‐methylpyrrolidinium trifluoromethylsulfonate ([Py1,4]TfO) was also investigated. In [Py1,4]TfO, there are, on average, 4.5 TfO? anions coordinating each zinc ion, corresponding to the weak interaction between [Py1,4]+ cations and TfO? anions. The species present in [Py1,4]TfO are likely a mixture of [Zn(TfO)4]2? and [Zn(TfO)5]3?.  相似文献   

9.
By using complementary experimental techniques and first‐principles theoretical calculations, magnetic anisotropy in a series of five hexacoordinated nickel(II) complexes possessing a symmetry close to C2v, has been investigated. Four complexes have the general formula [Ni(bpy)X2]n+ (bpy=2,2′‐bipyridine; X2=bpy ( 1 ), (NCS?)2 ( 2 ), C2O42? ( 3 ), NO3? ( 4 )). In the fifth complex, [Ni(HIM2‐py)2(NO3)]+ ( 5 ; HIM2‐py=2‐(2‐pyridyl)‐4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazolyl‐1‐hydroxy), which was reported previously, the two bpy bidentate ligands were replaced by HIM2‐py. Analysis of the high‐field, high‐frequency electronic paramagnetic resonance (HF‐HFEPR) spectra and magnetization data leads to the determination of the spin Hamiltonian parameters. The D parameter, corresponding to the axial magnetic anisotropy, was negative (Ising type) for the five compounds and ranged from ?1 to ?10 cm?1. First‐principles SO‐CASPT2 calculations have been performed to estimate these parameters and rationalize the experimental values. From calculations, the easy axis of magnetization is in two different directions for complexes 2 and 3 , on one hand, and 4 and 5 , on the other hand. A new method is proposed to calculate the g tensor for systems with S=1. The spin Hamiltonian parameters (D (axial), E (rhombic), and gi) are rationalized in terms of ordering of the 3 d orbitals. According to this orbital model, it can be shown that 1) the large magnetic anisotropy of 4 and 5 arises from splitting of the eg‐like orbitals and is due to the difference in the σ‐donor strength of NO3? and bpy or HIM2‐py, whereas the difference in anisotropy between the two compounds is due to splitting of the t2g‐like orbitals; and 2) the anisotropy of complexes 1 – 3 arises from the small splitting of the t2g‐like orbitals. The direction of the anisotropy axis can be rationalized by the proposed orbital model.  相似文献   

10.
A theoretical study at the ab initio MP2/6‐311++G(d,p) level of theory is carried out to characterize several heterocyclic spiro[2.2]pentane cations with N, P, and As as spiro atoms. The strain and relative stability of the spiropentanes are obtained through isodesmic reactions. Nucleus‐independent chemical shifts (NICS) and 3D NICS isosurfaces show σ‐aromatic characteristics, similar to those found in cyclopropane. The interaction with the Cl? anion, which results in four different stationary structures, is studied and characterized by means of the atoms in molecules methodology, and Cl ??? pnicogen, Cl ??? H, and Cl ??? C interactions are found. The most stable structure in all cases corresponds to opening of one of the three‐membered rings, due to the attack of the Cl atom, and C?Cl bond formation. Furthermore, the reaction with the 3‐boranuidaspiro[2.2]pentane anion results in the formation of a new compound through cleavage of one ring of both reactants.  相似文献   

11.
RhIII and IrIII complexes based on the λ3‐P,N hybrid ligand 2‐(2′‐pyridyl)‐4,6‐diphenylphosphinine ( 1 ) react selectively at the P?C double bond to chiral coordination compounds of the type [( 1 H ? OH)Cp*MCl]Cl ( 2 , 3 ), which can be deprotonated with triethylamine to eliminate HCl. By using different bases, the pKa value of the P? OH group could be estimated. Whereas [( 1 H ? O)Cp*IrCl] ( 4 ) is formed quantitatively upon treatment with NEt3, the corresponding rhodium compound [( 1 H ? O)Cp*RhCl] ( 5 ) undergoes tautomerization upon formation of the λ5σ4‐phosphinine rhodium(III) complex [( 1? OH)Cp*RhCl] ( 6 ) as confirmed by single‐crystal X‐ray diffraction. Blocking the acidic P? OH functionality in 3 by introducing a P? OCH3 substituent leads directly to the λ5σ4‐phosphinine iridium(III) complex ( 8 ) upon elimination of HCl. These new transformations in the coordination environment of RhIII and IrIII provide an easy and general access to new transition‐metal complexes containing λ5σ4‐phosphinine ligands.  相似文献   

12.
Three new μ‐oxamido‐bridged heterodinuclear copper (II)‐chromium (III) complexes formulated [Cu(Me2oxpn)Cr‐(L)2](NO3)3, where Me2oxpn denotes N,N'‐bis(3‐amino‐2, 2‐dimethylpropyl)oxamido dianion and L represents 5‐methyl‐1,10‐phenanthroline (Mephen), 4,7‐diphenyl‐1,10‐phenanthroline (Ph2phen) or 2,2′‐bipyridine (bpy), have been synthesized and characterized by elemental analyses, IR and electronic spectral studies, magnetic moments of room‐temperature and molar conductivity measurements. It is proposed that these complexes have oxamido‐bridged structures consisting of planar copper (II) and octahedral chromium (III) ions. The variable temperature magnetic susceptibilities (4.2–300 K) of complexes [Cu(Me2oxpn)Cr(Ph2phen)2](NO3)3 (1) and [Cu(Me2oxpn)Cr(Mephen)2] (NO3)3 (2) were further measured and studied, demonstrating the ferromagnetic interaction between the adjacent chromium (III) and copper (II) ions through the oxamido‐bridge in both complexes 1 and 2. Based on the spin Hamiltonian, ? = ‐ 2J?1 · ?2, the exchange integrals J were evaluated as + 21.5 an?1 for 1 and + 22.8 cm?1 for 2.  相似文献   

13.
The 1:1 organic salt of the title compound, C7H6ClN2O+·C8H5Cl2O3? or [(2‐ABOX)(3,4‐D)], comprises the two constituent mol­ecules associated by an R22(8) graph‐set interaction through the carboxyl­ate group of 3,4‐D across the protonated N/N sites of 2‐ABOX [N?O 2.546 (3) and 2.795 (3) Å]. Cation/anion pairs associate across an inversion centre forming discrete tetramers via an additional three‐centre hydrogen‐bonding association from the latter N amino proton to a phenoxy O atom [N?O 3.176 (3) Å] and a carboxyl­ate O atom [N?O 2.841 (3) Å]. This formation differs from the polymeric hydrogen‐bonded chains previously observed for adduct structures of 2‐ABOX with carboxyl­ic acids.  相似文献   

14.
Dimethyl Earth‐Metal Heterocycles – Derivatives of Trimethyl‐silylated, ‐germylated, and ‐stannylated Phosphanes and Arsanes – Syntheses, Spectra, and Structures The organo earth‐metal heterocycles [Me2MIII–E(MIVMe3)2]n with MIII = Al, Ga, In; E = P, As; MIV = Si, Ge, Sn and n = 2, 3 (Me = CH3) have been prepared from the dimethyl metal compounds Me2MIIIX (X = Me, H, Cl, OMe, OPh) and the pnicogen derivatives HnE(MIVMe3)3–n (n = 0, 1) according to known preparation methods. The mass, 1H, 13C, 31P, 29Si, 119Sn nmr, as well as the ir and Raman spectra have been discussed comparatively; selected representatives are characterized by X‐ray structure analyses. The dimeric species with four‐membered (E–MIII)2 rings are isotypic and crystallize in the triclinic space group P1, the trimer [Me2In–P(SnMe3)2]3 with a strongly puckered (In–P)3‐ring skeleton crystallizes with two formula units per cell in the same centrosymmetric triclinic space group.  相似文献   

15.
As is well‐known, the C2?H proton of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([Emim]BF4) and 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([Bmim]BF4) has a strong ability to form hydrogen bonds. The purpose of this work is to evaluate the effect of the interactions of the C4?H and C5?H protons on the microstructure of [Emim]BF4 and [Bmim]BF4 with water by using 1H NMR spectroscopy. The differences between the relative 1H NMR chemical shifts of C2?H, C4?H, and C5?H and between the interaction‐energy parameters obtained from these chemical shifts are minor, thus suggesting that the interactions of C4?H and C5?H may have a considerable effect on the microstructure. To confirm this, the viscosities of the systems are estimated by using the interaction‐energy parameters obtained from the 1H NMR chemical shifts of the three studied aromatic protons and water, showing that the interactions of C4?H and C5?H also play an important role in the microstructure.  相似文献   

16.
Further study of our aerobic intermolecular cyclization of acrylic acid with 1‐octene to afford α‐methylene‐γ‐butyrolactones, catalyzed by the Pd(OCOCF3)2/Cu(OAc)2 ? H2O system, has clarified that the accumulation of water generated from oxygen during the reaction causes deactivation of the Cu cocatalyst. This prevents regeneration of the active Pd catalyst and, thus, has a harmful influence on the progress of the cyclization. As a result, both the substrate conversion and product yield are efficiently improved by continuous removal of water from the reaction mixture. Detailed analysis of the kinetic and spectroscopic measurements performed under the condition of continuous water removal demonstrates that the cyclization proceeds in four steps: 1) equilibrium coordination of 1‐octene to the Pd acrylate species, 2) Markovnikov‐type acryloxy palladation of 1‐octene (1,2‐addition), 3) intramolecular carbopalladation, and 4) β‐hydride elimination. Byproduct 2‐acryloxy‐1‐octene is formed by β‐hydride elimination after step 2). These cyclization steps fit the Michaelis–Menten equation well and β‐hydride elimination is considered to be a rate‐limiting step in the formation of the products. Spectroscopic data agree sufficiently with the existence of the intermediates bearing acrylate (Pd? O bond), η3‐C8H15 (Pd? C bond), or C11H19O2 (Pd? C bond) moieties on the Pd center as the resting‐state compounds. Furthermore, not only CuII, but also CuI, species are observed during the reaction time of 2–8 h when the reaction proceeds efficiently. This result suggests that the CuII species is partially reduced to the CuI species when the active Pd catalytic species are regenerated.  相似文献   

17.
The enantioselective syntheses of 3‐amino‐5‐fluoropiperidines and 3‐amino‐5,5‐difluoropiperidines were developed using the ring enlargement of prolinols to access libraries of 3‐amino‐ and 3‐amidofluoropiperidines. The study of the physicochemical properties revealed that fluorine atom(s) decrease(s) the pKa and modulate(s) the lipophilicity of 3‐aminopiperidines. The relative stereochemistry of the fluorine atoms with the amino groups at C3 on the piperidine core has a small effect on the pKa due to conformationnal modifications induced by fluorine atom(s). In the protonated forms, the C?F bond is in an axial position due to a dipole–dipole interaction between the N?H+ and C?F bonds. Predictions of the physicochemical properties using common software appeared to be limited to determine correct values of pKa and/or differences of pKa between cis‐ and trans‐3‐amino‐5‐fluoropiperidines.  相似文献   

18.
The crystal of the N‐isopropyl‐iminodiacetic acid ( 1 ) consists of a 3D H‐bonded framework where the zwitterion (H2iPIDA±) is intra‐stabilized by one N+‐H···O interaction and both carboxyl are half‐protonated and involved in linear O‐H···O inter‐molecular bridges of 2.46 Å. The mixed‐ligand complexes [Cu(iPIDA)(H2?im)(H2O)]·3H2O ( 2 ) and [Cu(iPIDA)(H5?im)]n ( 3 ) have also been synthesized and studied by thermal, spectral, magnetic and X‐ray diffraction methods. Both complexes exhibit a square base pyramidal coordination, type 4+1. Compound 3 is the less steric hindered 'remote' isomer, with H5?im instead of H4?im.  相似文献   

19.
Cationic, two‐coordinate triphenylphosphine–gold(I)–π complexes of the form [(PPh3)Au(π ligand)]+ SbF6? (π ligand=4‐methylstyrene, 1? SbF6), 2‐methyl‐2‐butene ( 3? SbF6), 3‐hexyne ( 6? SbF6), 1,3‐cyclohexadiene ( 7? SbF6), 3‐methyl‐1,2‐butadiene ( 8? SbF6), and 1,7‐diphenyl‐3,4‐heptadiene ( 10? SbF6) were generated in situ from reaction of [(PPh3)AuCl], AgSbF6, and π ligand at ?78 °C and were characterized by low‐temperature, multinuclear NMR spectroscopy without isolation. The π ligands of these complexes were both weakly bound and kinetically labile and underwent facile intermolecular exchange with free ligand (ΔG≈9 kcal mol?1 in the case of 6? SbF6) and competitive displacement by weak σ donors, such as trifluoromethane sulfonate. Triphenylphosphine–gold(I)–π complexes were thermally unstable and decomposed above ?20 °C to form the bis(triphenylphosphine) gold cation [(PPh3)2Au]+SbF6? ( 2? SbF6).  相似文献   

20.
In the title compound, C18H20F2N4O2S, the triazinane‐2‐thione ring adopts an envelope conformation, the ring substituents lie on the same side of the mean plane of the heterocyclic ring and the exo lp—N—C—Ntriaz unit (lp is a lone pair and triaz is the triazinane ring) exhibits an antiperiplanar orientation, which is shown to be governed by strong anomeric effects. Molecules are linked into a complex three‐dimensional framework by a combination of two N—H...S hydrogen bonds, three C—H...F hydrogen bonds and a π–π stacking interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号