首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural and electronic properties of Li4+xTi5O12 compounds (with 0≤x≤6)—to be used as anode materials for lithium‐ion batteries—are studied by means of first principles calculations. The results suggest that Li4Ti5O12 can be lithiated to the state Li8.5Ti5O12, which provides a theoretical capacity that is about 1.5 times higher than that of the compound lithiated to Li7Ti5O12. Further insertion of lithium species into the Li8.5Ti5O12 lattice results in a clear structural distortion. The small lattice expansion observed upon lithium insertion (about 0.4 % for the lithiated material Li8.5Ti5O12) and the retained [Li1Ti5]16dO12 framework indicate that the insertion/extraction process is reversible. Furthermore, the predicted intercalation potentials are 1.48 and 0.05 V (vs Li/Li+) for the Li4Ti5O12/Li7Ti5O12 and Li7Ti5O12/Li8.5Ti5O12 composition ranges, respectively. Electronic‐structure analysis shows that the lithiated states Li4+xTi5O12 are metallic, which is indicative of good electronic‐conduction properties.  相似文献   

2.
《中国化学》2017,35(12):1853-1860
Recent success and application of the percolation theory have highlighted cation‐disordered Li‐rich oxides as high energy density cathode materials. Generally, this kind of cathode materials suffer from low cycling stability and rate performance. Doped Ti4+ ions can improve the long‐term cycling stability and rate performance of the Li‐rich oxides materials with obvious capacity fading. The electrochemical performance in Lix Ni2−4x /3Sbx /3O2 can benefit a lot from the nanohighway, which is a kind of nanoscale 0‐TM diffusion channels in the transition metal layer and provides low diffusion barrier pathways for the lithium diffusion. In this work, the doping effect of Ti on the structure and electrochemical properties in Li1.15Ni0 .47Sb0 .38O2 is studied. The Ti‐stabilized Li1.15−x Ni0.47Tix Sb0 .38O2 (x =0, 0.01, 0.03 and 0.05) have been prepared by a solid‐state method and the Li1.03Ni0 .47Sb0 .38Ti0 .03O2 sample exhibits outstanding electrochemical performance with a larger reversible discharge capacity, better rate capability and cyclability. Synchrotron‐based XANES , combined with ab initio calculations in the multiple‐scattering framework, reveals the Ti ions have been doped into the Li‐site in the lithium layer and formed a distortion TiO6 octahedron. This TiO6 local configuration in the lithium can keep the stability of nanohighway in the electrochemical process. In particular, the Li1.03Ni0 .47Sb0 .38Ti0 .03O2 compound can deliver a discharge capacities 132 and 76 mAh /g at 0.2 and 5 C, respectivly. About 86% capacity retention occurs at 1 C rate after 500 cycles. This work suggests capacity fading in the oxide cathode materials can be suppressed to construct and stabilize the nanohighway.  相似文献   

3.
In this study, we explored the feasibility of using electrochemically generated γ‐LixV2O5 as an insertion‐type anode in the lithium‐ion capacitor (LIC) with activated carbon (AC) as a cathode. Along with the native form of V2O5, their carbon composites are also used as the electrode material which is prepared by high‐energy ball milling. The electrochemical pre‐lithiation strategy is used to generate the desired γ‐phase of V2O5 (γ‐LixV2O5). Under the optimized mass loading conditions, the LICs are assembled with γ‐LixV2O5 as anode and AC as a cathode in the organic medium. Among the different LICs fabricated, AC/γ‐LixV2O5‐BM50 configuration delivered an energy density of 33.91 Wh kg?1 @ 0.22 kW kg?1 with excellent capacity retention characteristics. However, a dramatic increase in energy density (43.98 Wh kg?1@0.28 kW kg?1) is noted after the electrolyte modification with fluoroethylene carbonate. The high temperature performance of the assembled LIC is also studied and found that γ‐LixV2O5 phase can be used as a potential battery‐type component to construct high‐performance hybrid charge storage devices.  相似文献   

4.
The electrochemical reactions of lithium with layered composite electrodes (x)LiMn0.5Ni0.5O2·(1−x)Li2TiO3 were investigated at low voltages. The metal oxide 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 (x=0.95) which can also be represented in layered notation as Li(Mn0.46Ni0.46Ti0.05Li0.02)O2, can react with one equivalent of lithium during an initial discharge from 3.2 to 1.4 V vs. Li0. The electrochemical reaction, which corresponds to a theoretical capacity of 286 mAh/g, is hypothesized to form Li2(Mn0.46Ni0.46Ti0.05Li0.02)O2 that is isostructural with Li2MnO2 and Li2NiO2. Similar low-voltage electrochemical behavior is also observed with unsubstituted, standard LiMn0.5Ni0.5O2 electrodes (x=1). In situ X-ray absorption spectroscopy (XAS) data of Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 electrodes indicate that the low-voltage (<1.8 V) reaction is associated primarily with the reduction of Mn4+ to Mn2+. Symmetric rocking-chair cells with the configuration Li(Mn0.46Ni0.46Ti0.05Li0.02)O2/Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 were tested. These electrodes provide a rechargeable capacity in excess of 300 mAh/g when charged and discharged over a 3.3 to −3.3 V range and show an insignificant capacity loss on the initial cycle. These findings have implications for combating the capacity-loss effects at graphite, metal–alloy, or intermetallic negative electrodes against lithium metal-oxide positive electrodes of conventional lithium-ion cells.  相似文献   

5.
The V5+/Nb5+-substituted lithium lanthaum titanates are synthesized by a conventional solid-state reaction method at high temperature in air. The structural and conductivity studies of the obtained perovskite oxide samples are investigated by x-ray diffraction (XRD), SEM, and impedance spectroscopy. From the powder XRD patterns, it is clearly observed that the synthesized samples exhibit a well-defined cubic structure with the Pm3m (Z = 1) space group. The lattice parameter is decreased with increasing vanadium content in Li0.5?x La0.5Ti1?x V x O3, but increased with the increasing niobium content in Li0.5?x La0.5Ti1?x Nb x O3. The scanning electron microscope measurements confirmed that these materials consist of fairly ordered grains throughout the surface area. The conductivity variations with the substitution of vanadium/niobium are also reported. The bulk ionic conductivity measured in the temperature range from room temperature to 150 °C is about the same as reported earlier for the related lithium lanthanum titanate. However, the low activation energies for ionic conduction observed for these samples encourage further investigations for better conductors in this system.  相似文献   

6.
Li4Ti5O12/Li2TiO3 composite nanofibers with the mean diameter of ca. 60 nm have been synthesized via facile electrospinning. When the molar ratio of Li to Ti is 4.8:5, the Li4Ti5O12/Li2TiO3 composite nanofibers exhibit initial discharge capacity of 216.07 mAh g?1 at 0.1 C, rate capability of 151 mAh g?1 after being cycled at 20 C, and cycling stability of 122.93 mAh g?1 after 1000 cycles at 20 C. Compared with pure Li4Ti5O12 nanofibers and Li2TiO3 nanofibers, Li4Ti5O12/Li2TiO3 composite nanofibers show better performance when used as anode materials for lithium ion batteries. The enhanced electrochemical performances are explained by the incorporation of appropriate Li2TiO3 which could strengthen the structure stability of the hosted materials and has fast Li+-conductor characteristics, and the nanostructure of nanofibers which could offer high specific area between the active materials and electrolyte and shorten diffusion paths for ionic transport and electronic conduction. Our new findings provide an effective synthetic way to produce high-performance Li4Ti5O12 anodes for lithium rechargeable batteries.  相似文献   

7.
Porous microspherical Li4Ti5O12 aggregates (LTO‐PSA) can be successfully prepared by using porous spherical TiO2 as a titanium source and lithium acetate as a lithium source followed by calcinations. The synthesized LTO‐PSA possess outstanding morphology, with nanosized, porous, and spherical distributions, that allow good electrochemical performances, including high reversible capacity, good cycling stability, and impressive rate capacity, to be achieved. The specific capacity of the LTO‐PSA at 30 C is as high as 141 mA h g?1, whereas that of normal Li4Ti5O12 powders prepared by a sol–gel method can only achieve 100 mA h g?1. This improved rate performance can be ascribed to small Li4Ti5O12 nanocrystallites, a three‐dimensional mesoporous structure, and enhanced ionic conductivity.  相似文献   

8.
A new NASICON-related structure of lithium titanium phosphate Li2.72Ti2(PO4)3 has been determined. This compound crystallizes in an orthorhombic system, Pbcn, with a = 12.064 (3) Å, b = 8.663 (3) Å, c = 8.711 (4) Å, V = 910.4 (8) Å3, and Z = 4. The single crystal structure of this novel mixed valent titanium(III/IV) phosphate reveals one titanium atom per asymmetric unit. Two lithium sites are characterized by a pair of distorted polyhedra, Li(1)O4 and Li(2)O5, which share a common edge resulting in a short Li(1) … Li(2) distance, i.e., 2.29 (5) Å. Magnetic susceptibility and microprobe analysis confirmed the structural composition. The room temperature ionic conductivity is comparable with that of the known Li1+xTiIV2−xInIIIx(PO4)3, which suggests possible fast ionic conductivity.  相似文献   

9.
Developing high‐performance all‐solid‐state batteries is contingent on finding solid electrolyte materials with high ionic conductivity and ductility. Here we report new halide‐rich solid solution phases in the argyrodite Li6PS5Cl family, Li6?xPS5?xCl1+x, and combine electrochemical impedance spectroscopy, neutron diffraction, and 7Li NMR MAS and PFG spectroscopy to show that increasing the Cl?/S2? ratio has a systematic, and remarkable impact on Li‐ion diffusivity in the lattice. The phase at the limit of the solid solution regime, Li5.5PS4.5Cl1.5, exhibits a cold‐pressed conductivity of 9.4±0.1 mS cm?1 at 298 K (and 12.0±0.2 mS cm?1 on sintering)—almost four‐fold greater than Li6PS5Cl under identical processing conditions and comparable to metastable superionic Li7P3S11. Weakened interactions between the mobile Li‐ions and surrounding framework anions incurred by substitution of divalent S2? for monovalent Cl? play a major role in enhancing Li+‐ion diffusivity, along with increased site disorder and a higher lithium vacancy population.  相似文献   

10.
Nitridated mesoporous Li4Ti5O12 spheres were synthesized by a simple ammonia treatment of Li4Ti5O12 derived from mesoporous TiO2 particles and lithium acetate dihydrate via a solid state reaction in the presence of polyethylene glycol 20000. The carbonization of polyethylene glycol could effectively restrict the growth of primary particles, which was favorable for lithium ions diffusing into the nanosized TiO2 lattice during the solid state reaction to form a pure phase Li4Ti5O12. After a subsequent thermal nitridation treatment, a high conductive thin TiO x N y layer was in situ constructed on the surface of the primary nanoparticles. As a result, the nitridated mesoporous Li4Ti5O12 structure, possessing shorter lithium-ion diffusion path and better electrical conductivity, displays significantly improved rate capability. The discharge capacity reaches 138 mAh?g?1 at 10 C rate and 120 mAh?g?1 at 20 C rate in the voltage range of 1–3 V.  相似文献   

11.
High‐energy‐density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co‐solvents with sustained‐release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high‐loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm?2), and lean electrolytes (6.1 g Ah?1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg?1 for 60 cycles with lean electrolytes (2.3 g Ah?1).  相似文献   

12.
Electrical conductivity in the monoclinic Li2TiO3, cubic Li1.33Ti1.67O4, and in their mixture has been studied by impedance spectroscopy in the temperature range 20–730 °C. Li2TiO3 shows low lithium ion conductivity, σ300≈10–6 S/cm at 300 °C, whereas Li1.33Ti1.67O4 has 3×10–8 at 20 °C and 3×10–4 S/cm at 300 °C. Structural properties are used to discuss the observed conductivity features. The conductivity dependences on temperature in the coordinates of 1000/T versus logeT) are not linear, as the conductivity mechanism changes. Extrinsic and intrinsic conductivity regions are observed. The change in the conductivity mechanism in Li2TiO3 at around 500–600 °C is observed and considered as an effect of the first-order phase transition, not reported before. Formation of solid solutions of Li2– x Ti1+ x O3 above 900 °C significantly increases the conductivity. Irradiation by high-energy (5 MeV) electrons causes defects and the conductivity in Li2TiO3 increases exponentially. A dose of 144 MGy yields an increase in conductivity of about 100 times at room temperature. Electronic Publication  相似文献   

13.
The anode materials Li4?xMgxTi5?xZrxO12 (x=0, 0.05, 0.1) were successfully synthesized by sol‐gel method using Ti(OC4H9)4, CH3COOLi·2H2O, MgCl2·6H2O and Zr(NO3)3·6H2O as raw materials. The crystalline structure, morphology and electrochemical properties of the as‐prepared materials were characterized by XRD, SEM, cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS) and charge‐discharge cycling tests. The results show that the lattice parameters of the Mg‐Zr doped samples are slightly larger than that of the pure Li4Ti5O12, and Mg‐Zr doping does not change the basic Li4Ti5O12 structure. The rate capability of Li4?xMgxTi5?xZrxO12 (x=0.05, 0.1) electrodes is significantly improved due to the expansile Li+ diffusion channel and reduced charge transfer resistance. In this study, Li3.95Mg0.05Ti4.95Zr0.05O12 represented a relatively good rate capability and cycling stability, after 400 cycles at 10 C, the discharge capacity retained as 134.74 mAh·g?1 with capacity retention close to 100%. The excellent rate capability and good cycling performance make Li3.95Mg0.05Ti4.95Zr0.05O12 a promising anode material in lithium‐ion batteries.  相似文献   

14.
A new series of (Y2‐yLiy)Ti2O7‐y having an ordered pyrochlore phase was prepared by a solid state reaction method with a solid solution range of 0.05 ≥ y ≥ 0.10. Unit cell parameters obtained by the Rietveld refinement method shows that the a‐axis decreases linearly with increasing the amount of Li ion addition, indicating the successful incorporation of the Li ion into unit cell. The average x‐fractional coordinate of the O(1) site depends on the ionic radius ratio of r(A3+)/r(Ti4+) in the A2Ti2O7 with a pyrochlore phase. The Ti K‐edge XANES spectra of the (Y2‐yLiy)Ti2O7‐y show that the valence of the Ti ions is slightly less than 4 so that Ti is in the mixed valence state. Average particle size increases with increasing the amount of extra Li ion addition, which acts as a flux to lower the melting point of the materials.  相似文献   

15.
The electrochemical properties of 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 have been investigated as part of a study of xLiMO2·(1−x)Li2MO3 electrode systems for lithium batteries in which M=Co, Ni, Mn and M=Ti, Zr, Mn. The data indicate that the electrochemically inactive Li2TiO3 component contributes to the stabilization of LiMn0.5Ni0.5O2 electrodes, which improves the coulombic efficiency of Li/xLiMn0.5Ni0.5O2·(1−x)Li2TiO3 cells for x<1. The 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 electrodes provide a rechargeable capacity of approximately 175 mAh/g at 50 °C when cycled between 4.6 and 2.5 V; there is no indication of spinel formation during electrochemical cycling.  相似文献   

16.
Isostructural Li2MTi6O14 (M=Sr, Ba) materials, prepared by a solid state reaction method, have been investigated as insertion electrodes for lithium battery applications. These titanate compounds have a structure that consists of a three-dimensional network of corner- and edge-shared [TiO6] octahedra, 11-coordinate polyhedra for the alkali-earth ions, and [LiO4] tetrahedra in tunnels that also contain vacant tetrahedral and octahedral sites. Electrochemical data show that these compounds are capable of reversibly intercalating four lithium atoms in a three-stage process between 1.4 and 0.5 V vs. metallic lithium. The electrodes provide a practical capacity of approximately 140 mAh/g; they are, therefore, possible alternative anode materials to the lithium titanate spinel, Li4Ti5O12. The lithium intercalation mechanism and crystal structure of Li2MTi6O14 (M=Sr, Ba) electrodes are discussed and compared with the electrochemical and structural properties of Li4Ti5O12. The area-specific impedance (ASI) of Li/Li2SrTi6O14 cells was found to be significantly lower than that of Li/Li4Ti5O12 cells.  相似文献   

17.
The garnet electrolyte presents poor wettability with Li metal, resulting in an extremely large interfacial impedance and drastic growth of Li dendrites. Herein, a novel ultra‐stable conductive composite interface (CCI) consisting of LiySn alloy and Li3N is constructed in situ between Li6.4La3Zr1.4Ta0.6O12 (LLZTO) pellet and Li metal by a conversion reaction of SnNx with Li metal at 300 °C. The LiySn alloy as a continuous and robust bridge between LLZTO and Li metal can effectively reduce the LLZTO/Li interfacial resistance from 4468.0 Ω to 164.8 Ω. Meanwhile, the Li3N as a fast Li‐ion channel can efficiently transfer Li ions and give their uniform distribution at the LLZTO/Li interface. Therefore, the Li/LLZTO@CCI/Li symmetric battery stably cycles for 1200 h without short circuit, and the all‐solid‐state high‐voltage Li/LLZTO@CCI/LiNi0.5Co0.2Mn0.3O2 battery achieves a specific capacity of 161.4 mAh g?1 at 0.25 C with a capacity retention rate of 92.6 % and coulombic efficiency of 100.0 % after 200 cycles at 25 °C.  相似文献   

18.
0IntroductionMany efforts have been made to develop newmaterials as an alternative to LiCoO2due to the rela-tively high cost and toxicity of Co.Much attention hasbeen paid to layered structure cathode materials suchas LiMnO2and LiNiO2due to their lower co…  相似文献   

19.
Lithium‐rich layer‐structured oxides xLi2MnO3? (1?x)LiMO2 (0<x<1, M=Mn, Ni, Co, etc.) are interesting and potential cathode materials for high energy‐density lithium ion batteries. However, the characteristic charge compensation contributed by O2? in Li2MnO3 leads to the evolution of oxygen during the initial Li+ ion extraction at high voltage and voltage fading in subsequent cycling, resulting in a safety hazard and poor cycling performance of the battery. Molybdenum substitution was performed in this work to provide another electron donor and to enhance the electrochemical activity of Li2MnO3‐based cathode materials. X‐ray diffraction and adsorption studies indicated that Mo5+ substitution expands the unit cell in the crystal lattice and weakens the Li?O and Mn?O bonds, as well as enhancing the activity of Li2MnO3 by lowering its delithiation potential and suppressing the release of oxygen. In addition, the chemical environment of O2? ions in molybdenum‐substituted Li2MnO3 is more reversible than in the unsubstituted sample during cycling. Therefore molybdenum substitution is expected to improve the performances of the Li2MnO3‐based lithium‐rich cathode materials.  相似文献   

20.
Peony‐like spinel Li4Ti5O12 was synthesized via calcination of precursor at the temperature of 400°C, and the precursor was prepared through a hydrothermal process in which the reaction of hydrous titanium oxide with lithium hydroxide was conducted at 180°C. The as‐prepared product was investigated by SEM, TEM and XRD, respectively. As anode material for lithium ion battery, the Li4Ti5O12 obtained was also characterized by galvanostatic tests and cyclic voltammetry measurements. It is found that the peony‐like Li4Ti5O12 exhibited high rate capability of 119.7 mAh·g−1 at 10 C and good capacity retention of 113.8 mAh·g−1 after 100 cycles at 5 C, and these results indicate the peony‐like Li4Ti5O12 has promising applications for lithium ion batteries with high performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号