首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea‐grafted polyethylenimine (πPEI) with affinity‐purified His‐tagged proteins pre‐organized onto a nickel‐immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His‐tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His‐tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single‐chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions.  相似文献   

2.
Glycosylphosphatidylinositol (GPI) anchoring of proteins to the cell surface is important for various biological processes, but GPI‐anchored proteins are difficult to study. An effective strategy was developed for the metabolic engineering of cell‐surface GPIs and GPI‐anchored proteins by using inositol derivatives carrying an azido group. The azide‐labeled GPIs and GPI‐anchored proteins were then tagged with biotin on live cells through a click reaction, which allows further elaboration with streptavidin‐conjugated dyes or other molecules. The strategy can be used to label GPI‐anchored proteins with various tags for biological studies.  相似文献   

3.
A biotin‐tagged analogue of troglitazone was designed, synthesized and applied to affinity chromatography to pulldown EGFR from 293T cell lysates overexpressing EGFR, a membrane protein assumed to be troglitazone's direct binding target by previous work. The results indicate the feasibility of the biotinylated probe as a vigorous tool to clarify the molecular mechanisms for troglitazone's antitumor activities.  相似文献   

4.
Small molecules that dimerize proteins in living cells provide powerful probes of biological processes and have potential as tools for the identification of protein targets of natural products. We synthesized 7-alpha-substituted derivatives of beta-estradiol tethered to the natural product biotin to regulate heterodimerization of estrogen receptor (ER) and streptavidin (SA) proteins expressed as components of a yeast three-hybrid system. Addition of an estradiol-biotin chimera bearing a 19-atom linker to yeast expressing DNA-bound ER-alpha or ER-beta LexA fusion proteins and wild-type SA protein fused to the B42 activation domain activated reporter gene expression by as much as 450-fold in vivo (10 muM ligand). Comparative analysis of lower affinity Y43A (biotin Kd approximately 100 pM) and W120A (biotin Kd approximately 100 nM) mutants of SA indicated that moderate affinity interactions can be readily detected with this system. Comparison of a 7-alpha-substituted estradiol-biotin chimera with a structurally similar dexamethasone-biotin chimera revealed that yeast expressing ER proteins can detect cognate ligands with up to 5-fold greater potency and 70-fold higher activity than yeast expressing analogous glucocorticoid receptor (GR) proteins. This approach may facilitate the identification of protein targets of biologically active small molecules screened against genetically encoded libraries of proteins expressed in yeast three-hybrid systems.  相似文献   

5.
The dynamics of cell‐cell adhesion are complicated due to complexities in cellular interactions and intra‐membrane interactions. In the present work, we have reconstituted a liposome‐based model system to mimic the cell‐cell adhesion process. Our model liposome system consists of one fluorescein‐tagged and one TRITC (tetramethyl‐rhodamine isothiocyanate)‐tagged liposome, adhered through biotin‐neutravidin interaction. We monitored the adhesion process in liposomes using Förster Resonance Energy Transfer (FRET) between fluorescein (donor) and TRITC (acceptor). Occurrence of FRET is confirmed by the decrease in donor lifetime as well as distinct rise time of the acceptor fluorescence. Interestingly, the acceptor's emission exhibits fluctuations in the range of ≈3±1 s. This may be attributed to structural oscillations associated in two adhered liposomes arising from the flexible nature of biotin‐neutravidin interaction. We have compared the dynamics in a cell‐mimicking liposome system with that in an in vitro live cell system. In the adhered live cell system, we used CPM (7‐diethylamino‐3‐(4‐maleimido‐phenyl)‐4‐methylcoumarin, donor) and nile red (acceptor), which are known to stain the membrane of CHO (Chinese Hamster Ovary) cells. The dynamics of the adhered membranes of two live CHO cells were observed through FRET between CPM and nile red. The acceptor fluorescence intensity exhibits an oscillation in the time‐scale of ≈1±0.75 s, which is faster compared to the reconstituted liposome system, indicating the contributions and involvement of multiple dynamic protein complexes around the cell membrane. This study offers simple reconstituted model systems to understand the complex membrane dynamics using a FRET‐based physical chemistry approach.  相似文献   

6.
Developing a monomeric form of an avidin‐like protein with highly stable biotin binding properties has been a major challenge in biotin‐avidin linking technology. Here we report a monomeric avidin‐like protein—enhanced monoavidin—with off‐rates almost comparable to those of multimeric avidin proteins against various biotin conjugates. Enhanced monoavidin (eMA) was developed from naturally dimeric rhizavidin by optimally maintaining protein rigidity during monomerization and additionally shielding the bound biotin by diverse engineering of the surface residues. eMA allowed the monovalent and nonperturbing labeling of head‐group‐biotinylated lipids in bilayer membranes. In addition, we fabricated an unprecedented 24‐meric avidin probe by fusing eMA to a multimeric cage protein. The 24‐meric avidin and eMA were utilized to demonstrate how artificial clustering of cell‐surface proteins greatly enhances the internalization rates of assembled proteins on live cells.  相似文献   

7.
Sodium dodecyl sulfate (SDS), an anionic surfactant, is widely used in peptide and protein sample preparation. When the sample is analyzed by matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS), this surfactant can often cause signal suppression. We have previously reported an on‐probe sample preparation method using a suspension of anion‐exchange silica gel and sinapinic acid (i.e., gel‐SA suspension) as a matrix, thereby greatly improving the MALDI signal detection of the protein solutions containing SDS. In this study, we found that a certain amount of SDS enhanced the MALDI signal intensity for protein samples. This effect was also observed when using sodium decyl sulfate and sodium tetradecyl sulfate instead of SDS. Furthermore, this on‐probe sample preparation method using both SDS and the gel‐SA suspension improved the detection limit of protein samples in the MALDI‐MS analysis by about ten‐fold as compared to that of protein samples without SDS and the gel‐SA suspension. This method can be applied not only to the MALDI‐MS analysis of samples containing SDS, but also to the examination of proteins at femtomole levels or insoluble proteins such as membrane proteins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Chemical cross‐linking combined with mass spectrometry (MS) has been used to elucidate protein structures and protein‐protein interactions. However, heterogeneity of the samples and the relatively low abundance of cross‐linked peptides make this approach challenging. As an effort to overcome this hurdle, we have synthesized lysine‐reactive homobifunctional cross‐linkers with the biotin in the middle of the linker and used them to enrich cross‐linked peptides. The reaction of biotin‐tagged cross‐linkers with purified HIV‐1 CA resulted in the formation of hanging and intramolecular cross‐links. The peptides modified with biotinylated cross‐linkers were effectively enriched and recovered using a streptavidin‐coated plate and MS‐friendly buffers. The enrichment of modified peptides and removal of the dominantly unmodified peptides simplify mass spectra and their analyses. The combination of the high mass accuracy of Fourier transform ion cyclotron resonance (FT‐ICR) MS and the tandem mass spectrometric (MS/MS) capability of the linear ion trap allows us to unambiguously identify the cross‐linking sites and additional modification, such as oxidation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
New spin labeling strategies have immense potential in studying protein structure and dynamics under physiological conditions with electron paramagnetic resonance (EPR) spectroscopy. Here, a new spin‐labeled chemical recognition unit for switchable and concomitantly high affinity binding to His‐tagged proteins was synthesized. In combination with an orthogonal site‐directed spin label, this novel spin probe, Proxyl‐trisNTA (P‐trisNTA) allows the extraction of structural constraints within proteins and macromolecular complexes by EPR. By using the multisubunit maltose import system of E. coli: 1) the topology of the substrate‐binding protein, 2) its substrate‐dependent conformational change, and 3) the formation of the membrane multiprotein complex can be extracted. Notably, the same distance information was retrieved both in vitro and in situ allowing for site‐specific spin labeling in cell lysates under in‐cell conditions. This approach will open new avenues towards in‐cell EPR.  相似文献   

10.
11.
β‐barrel membrane proteins are key components of the outer membrane of bacteria, mitochondria and chloroplasts. Their three‐dimensional structure is defined by a network of backbone hydrogen bonds between adjacent β‐strands. Here, we employ hydrogen–deuterium (H/D) exchange in combination with NMR spectroscopy and mass spectrometry to monitor backbone hydrogen bond formation during folding of the outer membrane protein X (OmpX) from E. coli in detergent micelles. Residue‐specific kinetics of interstrand hydrogen‐bond formation were found to be uniform in the entire β‐barrel and synchronized to formation of the tertiary structure. OmpX folding thus propagates via a long‐lived conformational ensemble state in which all backbone amide protons exchange with the solvent and engage in hydrogen bonds only transiently. Stable formation of the entire OmpX hydrogen bond network occurs downhill of the rate‐limiting transition state and thus appears cooperative on the overall folding time scale.  相似文献   

12.
Site‐selective protein modification is a key step in facilitating protein functionalization and manipulation. To accomplish this, genetically engineered proteins were previously required, but the procedure was laborious, complex, and technically challenging. Herein we report the development of aptamer‐based recognition‐then‐reaction to guide site‐selective protein/DNA conjugation in a single step with outstanding selectivity and efficiency. As models, several proteins, including human thrombin, PDGF‐BB, Avidin, and His‐tagged recombinant protein, were studied, and the results showed excellent selectivity under mild reaction conditions. Taking advantage of aptamers as recognition elements with extraordinary selectivity and affinity, this simple preparation method can tag a protein in a complex milieu. Thus, with the aptamer obtained from cell‐SELEX, real‐time modification of live‐cell membrane proteins can be achieved in one step without any pre‐treatment.  相似文献   

13.
With the advent of single‐molecule methods, chemoselective and site‐specific labeling of proteins evolved to become a central aspect in chemical biology as well as cell biology. Protein labeling demands high specificity, rapid as well as efficient conjugation, while maintaining low concentration and biocompatibility under physiological conditions. Generic methods that do not interfere with the function, dynamics, subcellular localization of proteins, and crosstalk with other factors are crucial to probe and image proteins in vitro and in living cells. Alternatives to enzyme‐based tags or autofluorescent proteins are short peptide‐based recognition tags. These tags provide high specificity, enhanced binding rates, bioorthogonality, and versatility. Here, we report on recent applications of multivalent chelator heads, recognizing oligohistidine‐tagged proteins. The striking features of this system has facilitated the analysis of protein complexes by single‐molecule approaches.  相似文献   

14.
We have newly evaluated the interaction of lipid membrane with two different proteins of lysozyme and carbonic anhydrase from bovine (CAB) using a micro cantilever‐based liposome biosensor with a new droplet‐sealing structure. Herein 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphocholine (DPPC) liposomes are used as model lipid membrane and are immobilized on the surface of cantilever. The interaction of DPPC liposome with the target protein causes deflection of the micro‐cantilever, which can stably be detected by measuring the resistance change of the strain gauge. The resistance change dependent on time is used to evaluate the characteristic of liposome‐protein interaction. The resistance of the cantilever‐based biosensor increases monotonously with time in both of the two protein solutions. Especially, chronological resistance change depends markedly on both the concentration and species of target proteins. Finally, these results lead us to conclude that the cantilever‐based liposome biosensor with the droplet‐sealing structure facilitates the characterization of protein‐membrane interaction. It also means that this biosensor is a promising candidate device for label‐free detection of concentration and species of different target proteins.  相似文献   

15.
The highly conserved HIV‐1 transactivation response element (TAR) binds to the trans‐activator protein Tat and facilitates viral replication in its latent state. The inhibition of Tat–TAR interactions by selectively targeting TAR RNA has been used as a strategy to develop potent antiviral agents. Therefore, HIV‐1 TAR RNA represents a paradigmatic system for therapeutic intervention. Herein, we have employed biotin‐tagged TAR RNA to assemble its own ligands from a pool of reactive azide and alkyne building blocks. To identify the binding sites and selectivity of the ligands, the in situ cycloaddition has been further performed using control nucleotide (TAR DNA and TAR RNA without bulge) templates. The hit triazole‐linked thiazole peptidomimetic products have been isolated from the biotin‐tagged target templates using streptavidin beads. The major triazole lead generated by the TAR RNA presumably binds in the bulge region, shows specificity for TAR RNA over TAR DNA, and inhibits Tat–TAR interactions.  相似文献   

16.
We present the first study of the directed disassembly of a protein network at the air-water interface by the synergistic action of a surfactant and an enzyme. We seek to understand the fundamentals of protein network disassembly by using rubisco adsorbed at the air-water interface as a model. We propose that rubisco adsorption at the air-water interface results in the formation of a fishnet-like network of interconnected protein molecules, capable of transmitting lateral force. The mechanical properties of the rubisco network during assembly and disassembly at the air-water interface were characterized by direct measurement of laterally transmitted force through the protein network using the Cambridge interfacial tensiometer. We have shown that, when used individually, either 2 ppm of the surfactant, sodium dodecyl benzyl sulfonate (SDOBS), or 2 ppm of the enzyme, subtilisin A (SA), were insufficient to completely disassemble the rubisco network within 1 h of treatment. However, a combination of 2 ppm SDOBS and 2 ppm SA led to almost complete disassembly within 1 h. Increasing the concentration of SA in the mixture from 2 to 10 ppm, while keeping the SDOBS concentration constant, significantly decreased the time required to completely disassemble the rubisco network. Furthermore, the initial rate of network disassembly using formulations containing SDOBS was surprisingly insensitive to this increase in SA concentration. This study gives insight into the role of lateral interactions between protein molecules at interfaces in stabilizing interfacial protein networks and shows that surfactant and enzyme working in combination proves more effective at disrupting and mobilizing the interfacial protein network than the action of either agent alone.  相似文献   

17.
《Electroanalysis》2005,17(18):1659-1664
Evaluation of the streptavidin‐biotin binding at the surface of chitin film was carried out with voltammetry. Immobilization of streptavidin was attempted to the protonated chitin film, based on an electrostatic interaction that hardly causes any change in the protein structure. The streptavidin‐biotin binding was estimated from changes in the electrode response of biotin labeled with an electroactive compound. Although the response of daunomycin as an electroactive compound did not change at an electrode covered with streptavidin/chitin film, the response of the labeled biotin decreased. This observation shows that streptavidin is immobilized on the chitin film and the biotin binds with immobilized streptavidin. Consequently, it was clear that the chitin film is useful as a reaction field for protein‐ligand binding. Generally, a binding event between protein and its ligand in the living body occurs on the cell surface. The electrochemical evaluation of protein‐ligand binding on a natural polysaccharide like chitin membrane surface is important.  相似文献   

18.
Site‐specific labeling of proteins with lanthanide ions offers great opportunities for investigating the structure, function, and dynamics of proteins by virtue of the unique properties of lanthanides. Lanthanide‐tagged proteins can be studied by NMR, X‐ray, fluorescence, and EPR spectroscopy. However, the rigidity of a lanthanide tag in labeling of proteins plays a key role in the determination of protein structures and interactions. Pseudocontact shift (PCS) and paramagnetic relaxation enhancement (PRE) are valuable long‐range structure restraints in structural‐biology NMR spectroscopy. Generation of these paramagnetic restraints generally relies on site‐specific tagging of the target proteins with paramagnetic species. To avoid nonspecific interaction between the target protein and paramagnetic tag and achieve reliable paramagnetic effects, the rigidity, stability, and size of lanthanide tag is highly important in paramagnetic labeling of proteins. Here 4′‐mercapto‐2,2′: 6′,2′′‐terpyridine‐6,6′′‐dicarboxylic acid (4MTDA) is introduced as a a rigid paramagnetic and fluorescent tag which can be site‐specifically attached to a protein by formation of a disulfide bond. 4MTDA can be readily immobilized by coordination of the protein side chain to the lanthanide ion. Large PCSs and RDCs were observed for 4MTDA‐tagged proteins in complexes with paramagnetic lanthanide ions. At an excitation wavelength of 340 nm, the complex formed by protein–4MTDA and Tb3+ produces high fluorescence with the main emission at 545 nm. These interesting features of 4MTDA make it a very promising tag that can be exploited in NMR, fluorescence, and EPR spectroscopic studies on protein structure, interaction, and dynamics.  相似文献   

19.
Lipid analogues carrying three nitrilotriacetic acid (tris‐NTA) head groups were developed for the selective targeting of His‐tagged proteins into liquid ordered (lo) or liquid disordered (ld) lipid phases. Strong partitioning into the lo phase of His‐tagged proteins bound to tris‐NTA conjugated to saturated alkyl chains (tris‐NTA DODA) was achieved, while tris‐NTA conjugated to an unsaturated alkyl chain (tris‐NTA SOA) predominantly resided in the ld phase. Interestingly, His‐tag‐mediated lipid crosslinking turned out to be required for efficient targeting into the lo phase by tris‐NTA DODA. Robust partitioning into lo phases was confirmed by using viral lipid mixtures and giant plasma membrane vesicles. Moreover, efficient protein targeting into lo and ld domains within the plasma membrane of living cells was demonstrated by single‐molecule tracking, thus establishing a highly generic approach for exploring lipid microdomains in situ.  相似文献   

20.
Tuneable and stable surface‐chemical gradients in supported lipid bilayers (SLBs) hold great promise for a range of applications in biological sensing and screening. Yet, until now, no method has been reported that provides temporal control of SLB gradients. Herein we report on the development of locked‐in SLB gradients that can be tuned in space, time and density by applying a process to control lipid phase behaviour, electric field and temperature. Stable gradients of charged Texas‐Red‐, serine‐ or biotin‐terminated lipids have been prepared. For example, the Texas‐Red surface density was varied from 0 to 2 mol %, while the length was varied between several tens to several hundreds of microns. At room temperature the gradients are shown to be stable up to 24 h, while at 60 °C the gradients could be erased in 30 min. Covalent and non‐covalent chemical modification of the gradients is demonstrated, for example, by FITC, hexahistidine‐tagged proteins, and SAv/biotin. The amenability to various (bio)chemistries paves the way for novel SLB‐based gradients, useful in sensing, high‐throughput screening and for understanding dynamic biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号