首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 22.63 MHz 13C NMR spectra of a series of alkylated thioureas are reported. Characteristic Z and E spectral regions were found for the 13C ? S resonances. The two regions were generally found to be non-overlapping for the series, with the region of the Z, Z resonances occurring more downfield than those of either the Z, E or E, Z conformers in the cases of 1,3-disubstitution. The Z, Z configuration became favored and the relative chemical shift difference (Rδ) increased linearly with increasing substituent size. At 217 K, hindered internal rotation caused a multiplicity of resonances which were normally single peaks in the broad band 1H decoupled 62.86 MHz 13C spectrum of CH3NHCSNH(CH2)2NHCSNHCH3 (2MTE) at room temperature. The trends in chemical shifts and populations were employed to assign tentatively the resonances of five of the six possible configurational isomers contributing to the 2MTE spectra at 217 K. The isomer populations are given. The 13C NMR spectra reported here led to signal assignments of Z and E isomers which supported prior 1H NMR results and contradicted more recent results of another 13C NMR study of N-methylthiourea. The major peak of the exchange doublet occurs at relatively high field strengths in both methanol-d5.  相似文献   

2.
Five pentiptycene‐derived stilbene systems ( 1 R ; R =H, OM, NO, Pr, and Bu) have been prepared and investigated as light‐driven molecular brakes that have different‐sized brake components ( 1 H < 1 OM < 1 NO < 1 Pr < 1 Bu ). At room temperature (298 K), rotation of the pentiptycene rotor is fast (krot=108–109 s?1) with little interaction with the brake component in the trans form ((E)‐ 1 R ), which corresponds to the brake‐off state. When the brake is turned on by photoisomerization to the cis form ((Z)‐ 1 R ), the pentiptycene rotation can be arrested on the NMR spectroscopic timescale at temperatures that depend on the brake component. In the cases of (Z)‐ 1 NO , (Z)‐ 1 Pr , and (Z)‐ 1 Bu , the rotation is nearly blocked (krot=2–6 s?1) at 298 K. It is also demonstrated that the rotation is slower in [D6]DMSO than in CD2Cl2. A linear relationship between the free energies of the rotational barrier and the steric parameter A values is present only for (Z)‐ 1 H , (Z)‐ 1 OM , and (Z)‐ 1 NO , and it levels off on going from (Z)‐ 1 NO to (Z)‐ 1 Pr and (Z)‐ 1 Bu . DFT calculations provide insights into the substituent effects in the rotational ground and transition states. The molar reversibility of the E–Z photoswitching is up to 46 %, and both the E and Z isomers are stable under the irradiation conditions.  相似文献   

3.
Reactions of hydrogen sulfates of quino‐ and diquino‐annelated 1,4‐dithiins 11 and 2 with DMF/hydroxylamine‐O‐sulfonic acid/Fe++ ion system took place at the α‐quinolinyl positions and led to N,N‐dimethylcarbamoyl and N‐methyl‐N‐formylaminomethyl derivatives 6 , 8 , 12 and 7 , 9 , 13 , respectively. The 1H and 13C NMR spectra of N‐methyl‐N‐formylaminomethyl derivatives 7 , 9 , 13 showed the presence of rotational isomers E and Z regarding to the N‐methyl‐N‐formylaminomethyl substituent. The spectra of 6 , 7 , 8 , 12 and 13 were completely assigned with the use of 1D and 2D NMR techniques. In the case of rotational isomers 7a and 7b , the crucial correlations came from the NOE interaction between the methylene and methyl protons from CH2N(CH3)CHO groups and benzene‐rings protons. Synthesis of 2,3‐dihydro‐1,4‐dithiino[6,5‐e]quinoline 4‐oxide 14 was presented as well.  相似文献   

4.
New phototriggered molecular machines based on cyclic azobenzene were synthesized in which a 2,5‐dimethoxy, 2,5‐dimethyl, 2,5‐difluorine or unsubstituted‐1,4‐dioxybenzene rotating unit and a photoisomerizable 3,3′‐dioxyazobenzene moiety are bridged together by fixed bismethylene spacers. Depending upon substitution on the benzene moiety and on the E/Z conformation of the azobenzene unit, these molecules suffer various degrees of restriction on the free rotation of the benzene rotor. The rotation of the substituted benzene rotor within the cyclic azobenzene cavity imparts planar chirality to the molecules. Cyclic azobenzene 1 , with methoxy groups at both the 2‐ and 5‐positions of the benzene rotor, was so conformationally restricted that free rotation of the rotor was prevented in both the E and Z isomers and the respective planar chiral enantiomers were resolved. In contrast, compound 2 , with 2,5‐dimethylbenzene as the rotor, demonstrated the property of a light‐controlled molecular brake, whereby rotation of the 2,5‐dimethylbenzene moiety is completely stopped in the E isomer (brake ON, rotation OFF), while the rotation is allowed in the Z isomer (brake OFF, rotation ON). The cyclic azobenzene 3 , with fluorine substitution on the benzene rotor, was in the brake OFF state regardless of E/Z photoisomerization of the azobenzene moiety. More interestingly, for the first time, we demonstrated the induction of molecular chirality in a simple monocyclic azobenzene by circular‐polarized light. The key characteristics of cyclic azobenzene 2 , that is, stability of the chiral structure in the E isomer, fast racemization in the Z isomer, and the circular dichroism of enantiomers of both E and Z isomers, resulted in a simple reversible enantio‐differentiating photoisomerization directly between the E enantiomers. Upon exposure to r‐ or l‐circularly polarized light at 488 nm, partial enrichment of the (S)‐ or (R)‐enantiomers of 2 was observed.  相似文献   

5.
A sensitive and selective liquid chromatography/tandem mass spectrometric method was developed for simultaneous determination of E‐ and Z‐guggulsterone isomers (antihyperlipidemic drug) in rabbit plasma. Both the isomers were resolved on a Symmetry‐Shield C18 (5 µm, 4.6 × 150 mm) column, using gradient elution comprising a mobile phase of methanol, 0.5% v/v formic acid and acetonitrile. With dexamethasone as internal standard, plasma samples were extracted by an automated solid‐phase extraction method using C18 cartridges. Detection was performed by electrospray ionization in multiple reaction monitoring (MRM) in positive mode. The calibration curve was linear over the concentration range of 1.56–200 ng/mL (r2 ≥ 0.998) for both analytes. The intra‐day and inter‐day accuracy and precision were within −0.96 to 4.12 (%bias) and 2.73 to 8.00 (%RSD) respectively. The analytes were stable after three freeze–thaw cycles. The method was successfully applied to study steriospecific pharmacokinetics of E‐ and Z‐guggulsterone in NZ rabbit. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The mass spectral fragmentation of methyl esters of E and Z isomers of 2,3-dichloro-, 2-bromo-3-chloro-, 3-bromo-2-chIoro- and 2,3-dibromopropenoic acids have been investigated. The M peak is shown with all isomers, the [M ? OCH3]+, [M ? X]+, [M ? OCH3 ? CO]+, [M ? OCH3 ? CO ? X] and [M ? OCH3 ? CO ? X ? X]+ ions constituting abundant peaks in all spectra. The results, particularly from the bromochloro isomers, show that a halogen atom is eliminated from the 3- rather than the 2- position and from the Z rather than the E isomer. Bromine as a bulky atom is preferentially lost.  相似文献   

7.
A fast isocratic liquid chromatography method was developed for the simultaneous quantification of eight xanthophylls (13‐Z‐lutein, 13’‐Z‐lutein, 13‐Z‐zeaxanthin, all‐E‐lutein, all‐E‐zeaxanthin, all‐E‐canthaxanthin, all‐E‐β‐apo‐8’‐carotenoic acid ethyl ester and all‐E‐β‐apo‐8’‐carotenal) within 12 min, compared to 90 min by the conventional high‐performance liquid chromatography method. The separation was achieved on a YMC C30 reversed‐phase column (100 mm x 2.0 mm; 3 μm) operated at 20°C using a methanol/tert‐butyl methyl ether/water solvent system at a flow rate of 0.8 mL/min. The method was successfully applied to quantify lutein and zeaxanthin stereoisomers in egg yolk, raw and cooked spinach, and a dietary supplement. The method can be used for the rapid analysis of xanthophyll isomers in different food products and for quality control purposes.  相似文献   

8.
The thermal reaction of homoazulene (=bicyclo[5.3.1]undeca‐1,3,5,7,9‐pentaene; 2 ) with dimethyl acetylenedicarboxylate (ADM) in 1,2‐dichloroethane (ClCH2CH2Cl) results, in contrast to an earlier report [5], in formation of not only dimethyl homoheptalene‐4,5‐dicarboxylate (=bicyclo[5.5.1]trideca‐1,3,5,7,9,11‐hexaene‐4,5‐dicarboxylate; 3 ), but also of a 4 : 1 mixture of 3 and dimethyl homoheptalene‐2,3‐dicarboxylate ( 13 ) in almost quantitative yield (Schemes 1 and 3). The structures of both homoheptalenes have been corroborated by X‐ray crystal‐structure analysis (Fig. 5). The double‐bond‐shifted (DBS) isomers 3 ′ and 13 ′ of 3 and 13 , respectively, could not be detected in their 1H‐NMR spectra (600 MHz threshold of detection ≥0.5%), in agreement with the AM1‐calculated ΔH values of the four isomeric homoheptalene‐dicarboxylates (cf. Table 4). Vilsmeyer formylation of homoazulene ( 2 ) gave homoazulene‐8‐carbaldehyde ( 14 ) in a yield of 67%, which, on treatment with benzylidene‐(triphenyl)‐λ5‐phosphane, gave, in almost quantitative yield, a 1.6 : 1 mixture of (Z)‐ and (E)‐8‐styrylhomoazulene ((Z)‐ 15 and (E)‐ 15 , resp.). Thermal reaction of the latter mixture with ADM in 1,2‐dichloroethane led, in a yield of 42%, to a 5 : 1 mixture of dimethyl (Z)‐ and (E)‐2‐styrylhomoheptalene‐4,5‐dicarboxylate ((Z)‐ 15 and (E)‐ 16 , resp.). Both isomers were separated by column chromatography on silica gel. Again, the DBS isomers of (Z)‐ 16 and (E)‐ 16 , i.e., (Z)‐ 16 ′ and (E)‐ 16 ′, could not be detected in the 1H‐NMR spectra (600 MHz) of pure (Z)‐ 16 and (E)‐ 16 .  相似文献   

9.
The hydroauration of internal and terminal alkynes by gold(III) hydride complexes [(C^N^C)AuH] was found to be mediated by radicals and proceeds by an unexpected binuclear outer‐sphere mechanism to cleanly form trans‐insertion products. Radical precursors such as azobisisobutyronitrile lead to a drastic rate enhancement. DFT calculations support the proposed radical mechanism, with very low activation barriers, and rule out mononuclear mechanistic alternatives. These alkyne hydroaurations are highly regio‐ and stereospecific for the formation of Z‐vinyl isomers, with Z/E ratios of >99:1 in most cases.  相似文献   

10.
Fulgides are a representative class of photochromic organic molecules which exhibit several interesting properties for diverse applications in fields such as data storage or high‐resolution spectroscopy. The crystal structures of three furyl fulgides with different steric constraints were determined and for two of the compounds both the E and Z isomer structures were defined. The compounds are 3‐[(E)‐1,3‐dimethyl‐4,5,6,7‐tetrahydro‐2‐benzofuran‐4‐ylidene]‐4‐isopropylidenetetrahydrofuran‐2,5‐dione, C17H18O4, (I‐E), 3‐[(E)‐1,3‐dimethyl‐5,6,7,8‐tetrahydro‐4H‐cyclohepta[c]furan‐4‐ylidene]‐4‐isopropylidenetetrahydrofuran‐2,5‐dione, C18H20O4, (II‐E), and the Z isomer, (II‐Z), and 3‐isopropylidene‐4‐[(E)‐1‐(5‐methoxy‐2‐methyl‐1‐benzofuran‐3‐yl)ethylidene]tetrahydrofuran‐2,5‐dione, C19H18O5, (III‐E), with two molecules in the asymmetric unit, and the Z isomer, (III‐Z). The structures of the E and Z isomers show only little differences in the bond lengths and angles inside the hexatriene unit. Because of the strained geometry there are deviations in the torsion angles. Furthermore, small differences in the distances between the bond‐forming C atoms in the electrocyclization process give no explanation for the unequal photochromic behaviour.  相似文献   

11.
The new cyrhetrenyl acylhydrazone [(CO)3Re(η5‐C5H4)‐C(O)‐NH‐N = C(CH3)‐(2‐C4H2S‐5‐NO2)] ( E‐CyAH ) has been designed, synthesized and fully characterized to study the effect of having a cyrhetrenyl fragment (sensitizer) covalently bonded to an acylhydrazone moiety (switch), on its photophysical and photochemical properties. The crystal structure reveals that E‐CyAH adopts an E‐configuration around the iminic moiety [‐N = C(CH3)]. The absorption spectrum of E‐CyAH displays two bands at 270 and 380 nm, which are mainly ascribed to π → π* intraligand (IL) and dπ → π* metal‐to‐ligand charge transfer (MLCT) transitions, being consistent with DFT/TD‐DFT calculations. Upon 365 nm irradiation, E‐CyAH photoisomerizes to Z‐CyAH , as evidenced by UV‐Vis and 1H‐NMR spectral changes, with a quantum yield value ΦE‐CyAH →Z‐CyAH of 0.30. Z‐CyAH undergoes a first‐order thermal back‐isomerization process, with a relatively short half‐life τ1/2 of 277 min. Consequently, E‐CyAH was quantitatively recovered after 24 h, making it a fully reversible T‐type molecular photoswitch. This remarkable behavior allows us to measure the individual photophysical properties for both isomers. In addition, E‐CyAH and Z‐CyAH efficiently photosensitize the generation of singlet oxygen (O2 (1Δg)) with good yield (ΦΔ = 0.342).  相似文献   

12.
Yujun Xie  Zhen Li 《化学:亚洲杂志》2019,14(15):2524-2541
Focused research on the Z/E isomers of tetraphenylethene (TPE) derivatives is scarce in comparison with the thousands of luminogens with AIE properties (AIEgens) that have been synthesized based on the TPE moiety. The similar chemical and physical properties of the Z/E isomers make them difficult to separate by using conventional chromatographic techniques. However, they can be isolated by introducing polar groups and the pure isomers exhibit very different photophysical properties, mechanochromism, and host–guest coordination, as well as assisting in deciphering the AIE mechanism. In this Minireview, we present an overview of the disagreement regarding the AIE mechanism between the restriction of intramolecular vibration and photoinduced Z/E isomerization. Then, we discuss the development of (Z)‐/(E)‐TPE derivatives, their use in host–guest detection, and their mechanoluminescence properties, with a focus on their photophysical characteristics. Finally, we explore the stereoselective synthesis of pure (Z)‐/(E)‐TPE derivatives.  相似文献   

13.
The Ramirez yl­ide undergoes electrophilic substitution with di­alkyl acetyl­ene­di­carboxyl­ates, yielding a mixture of the Z and E adducts. The crystal structure analyses of the two adducts formed using di­methyl­acetyl­ene, viz. di­methyl (E)‐ and (Z)‐1‐[2‐(tri­phenyl­phospho­ranyl­idene)­cyclo­pentadien‐1‐yl]­ethyl­ene­di­carboxyl­ate, both C29H25O4P, explain an unusual chemical shift observed for the vinyl H atom of the Z adduct, which had previously precluded a definitive assignment of the isomers. In addition, the structures explain why only one of the isomers reacts further with acetyl­ene esters to produce azulenes with a rare substitution pattern.  相似文献   

14.
The E and Z geometric isomers of a stable silene (tBu2MeSi)(tBuMe2Si)Si=CH(1‐Ad) ( 1 ) were synthesized and characterized spectroscopically. The thermal Z to E isomerization of 1 was studied both experimentally and computationally using DFT methods. The measured activation parameters for the 1Z ? 1E isomerization are: Ea=24.4 kcal mol?1, ΔH=23.7 kcal mol?1, ΔS=?13.2 e.u. Based on comparison of the experimental and DFT calculated (at BP86‐D3BJ/def2‐TZVP(‐f)//BP86‐D3BJ/def2‐TZVP(‐f)) activation parameters, the Z?E isomerization of 1 proceeds through an unusual (unprecedented for alkenes) migration–rotation–migration mechanism (via a silylene intermediate), rather than through the classic rotation mechanism common for alkenes.  相似文献   

15.
The Z and E isomers of 3‐[4‐(dimethylamino)phenyl]‐2‐(2,4,6‐tribromophenyl)acrylonitrile, C17H13Br3N2, ( 1 ), were obtained simultaneously by a Knoevenagel condensation between 4‐(dimethylamino)benzaldehyde and 2‐(2,4,6‐tribromophenyl)acetonitrile, and were investigated by X‐ray diffraction and density functional theory (DFT) quantum‐chemical calculations. The (Z)‐( 1 ) isomer is monoclinic (space group P21/n, Z′ = 1), whereas the (E)‐( 1 ) isomer is triclinic (space group P, Z′ = 2). The two crystallographically‐independent molecules of (E)‐( 1 ) adopt similar geometries. The corresponding bond lengths and angles in the two isomers of ( 1 ) are very similar. The difference in the calculated total energies of isolated molecules of (Z)‐( 1 ) and (E)‐( 1 ) with DFT‐optimized geometries is ∼4.47 kJ mol−1, with the minimum value corresponding to the Z isomer. The crystal structure of (Z)‐( 1 ) reveals strong intermolecular nonvalent Br…N [3.100 (2) and 3.216 (3) Å] interactions which link the molecules into layers parallel to (10). In contrast, molecules of (E)‐( 1 ) in the crystal are bound to each other by strong nonvalent Br…Br [3.5556 (10) Å] and weak Br…N [3.433 (4) Å] interactions, forming chains propagating along [110]. The crystal packing of (Z)‐( 1 ) is denser than that of (E)‐( 1 ), implying that the crystal structure realized for (Z)‐( 1 ) is more stable than that for (E)‐( 1 ).  相似文献   

16.
The cycloadditions of methyl diazoacetate to 2,3‐bis(trifluoromethyl)fumaronitrile ((E)‐ BTE ) and 2,3‐bis(trifluoromethyl)maleonitrile ((Z)‐ BTE ) furnish the 4,5‐dihydro‐1H‐pyrazoles 13 . The retention of dipolarophile configuration proceeds for (E)‐ BTE with > 99.93% and for (Z)‐ BTE with > 99.8% (CDCl3, 25°), suggesting concertedness. Base catalysis (1,4‐diazabicyclo[2.2.2]octane (DABCO), proton sponge) converts the cycloadducts, trans‐ 13 and cis‐ 13 , to a 94 : 6 equilibrium mixture (CDCl3, r.t.); the first step is N‐deprotonation, since reaction with methyl fluorosulfonate affords the 4,5‐dihydro‐1‐methyl‐1H‐pyrazoles. Competing with the cis/trans isomerization of 13 is the formation of a bis(dehydrofluoro) dimer (two diastereoisomers), the structure of which was elucidated by IR, 19F‐NMR, and 13C‐NMR spectroscopy. The reaction slows when DABCO is bound by HF, but F? as base keeps the conversion to 22 going and binds HF. The diazo group in 22 suggests a common intermediate for cis/trans isomerization of 13 and conversion to 22 : reversible ring opening of N‐deprotonated 13 provides 18 , a derivative of methyl diazoacetate with a carbanionic substituent. Mechanistic comparison with the reaction of diazomethane and dimethyl 2,3‐dicyanofumarate, a related tetra‐acceptor‐ethylene, brings to light unanticipated divergencies.  相似文献   

17.
Reaction of N-benzylideneaniline, 1a , with 3-methyl-2-oxobutanedioic acid diethyl ester, 2a , produced isomeric 3-methyl-4,5-dioxo-1,2-diphenyl-3-pyrrolidinecarboxylic acid ethyl esters, 3a and 3b . The higher melting isomer, 3a , was shown to have the (Z) configuration by nmr spectroscopy. The (Z) and (E) isomers of 3-methyl-4,5-dioxo-1,2-diphenyl-3-pyrrolidinecarboxylic acid methyl esters, 3c and 3d , were prepared from 1a and 3-methyl-2-oxobutanedioic acid dimethyl ester, 2b . The higher melting isomer, 3c , was shown to have the (Z) configuration. Similarly, N-benzylidene-p-toluidine, 1b , reacted with 2a to form (Z) and (E) isomers of 3-methyl-4,5-dioxo-1-(4-methylphenyl)-2-phenyl-3-pyrrolidinecarboxlic acid ethyl esters, 3e and 3f . Assignment of the 13C carbonyl carbon nmr chemical shift was made by preparing 2-methyl-3-oxobutanedioic-1-13C acid diethyl ester, 4 , and from it the corresponding (Z) and (E) isomers of 3-methyl-4,5-dioxo-1,2-diphenyl-3-pyrrolidinecarboxylic 13C acid ester, 5a and 5b . The mass spectra of the (Z) isomers exhibit prominent ions corresponding to the masses of the Schiff bases used to make them, and ions corresponding to the loss of ArNCOCO from the parent ion. The (E) isomers 3b, 3d and 5b exhibit a prominent ion of mass 264; 3f gives mass 278, corresponding to the loss of the carboalkoxy group.  相似文献   

18.
Methyl (2Z,6Z,10E,14E)‐ ( 3 ) and methyl (2E,6Z,10E,14E)‐geranylfarnesoate ( 4 ) were prepared, and then individually cyclized in the presence of the superacid FSO3H. In the case of substrate 3 , the scalaranic ester 9 (26%) and the cheilanthanic ester 10 (39%) were isolated. Under the same conditions, substrate 4 afforded a mixture of the corresponding stereoisomers 11 (25%) and 12 (63%). The observed product selectivity supports that the internal, (6Z)‐configured C?C bond in these and other biologically relevant substrates plays an essential role in the cyclization process.  相似文献   

19.
The synthesis of various amide and ester derivatives of naphthopyrone‐2‐carboxylic acid has been carried out by reaction of 1‐naphthol with dimethyl acetylenedicarboxylate, which gave a mixture of E and Z isomers of naphthoxy diester. The diester on hydrolysis with KOH gave corresponding diacid, which was a mixture of E and Z isomers. The E and Z isomers were difficult to separate, which were subjected to cyclization in sulfuric acid to get cyclized naphthopyrone carboxylic acid. This acid is converted into titled compounds.  相似文献   

20.
Vinyl cyclopropane rearrangement (VCPR) has been utilised to synthesise a difluorinated cyclopentene stereospecifically and under mild thermal conditions. Difluorocyclopropanation chemistry afforded ethyl 3‐(1′(2′2′‐difluoro‐3′‐phenyl)cyclopropyl) propenoate as all four stereoisomers ( 18a , 18b , 22a , 22b ) (all racemic). The transE isomer ( 18a ), prepared in 70 % yield over three steps, underwent near quantitative VCPR to difluorocyclopentene 23 (99 %). Rearrangements were monitored by 19F NMR (100–180 °C). While cis/trans cyclopropane stereoisomerisation was facile, favouring trans‐isomers by a modest margin, no E/Z alkene isomerisation was observed even at higher temperatures. Neither cis nor trans Z‐alkenoates underwent VCPR, even up to much higher temperatures (180 °C). The cis‐cyclopropanes underwent [3,3]‐rearrangement to afford benzocycloheptadiene species. The reaction stereospecificity was explored by using electronic structure calculations, and UB3LYP/6‐31G* methodology allowed the energy barriers for cyclopropane stereoisomerisation, diastereoisomeric VCPR and [3,3]‐rearrangement to be ranked in agreement with experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号