首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible logic gates, such as the double Feynman gate, Toffoli gate and Peres gate, with 3‐input/3‐output channels are realized using reactions biocatalyzed with enzymes and performed in flow systems. The flow devices are constructed using a modular approach, where each flow cell is modified with one enzyme that biocatalyzes one chemical reaction. The multi‐step processes mimicking the reversible logic gates are organized by combining the biocatalytic cells in different networks. This work emphasizes logical but not physical reversibility of the constructed systems. Their advantages and disadvantages are discussed and potential use in biosensing systems, rather than in computing devices, is suggested.  相似文献   

2.
It is believed that connecting biomolecular computation elements in complex networks of communicating molecules may eventually lead to a biocomputer that can be used for diagnostics and/or the cure of physiological and genetic disorders. Here, a bioelectronic interface based on biomolecule‐modified electrodes has been designed to bridge reversible enzymatic logic gates with reversible DNA‐based logic gates. The enzyme‐based Fredkin gate with three input and three output signals was connected to the DNA‐based Feynman gate with two input and two output signals—both representing logically reversible computing elements. In the reversible Fredkin gate, the routing of two data signals between two output channels was controlled by the control signal (third channel). The two data output signals generated by the Fredkin gate were directed toward two electrochemical flow cells, responding to the output signals by releasing DNA molecules that serve as the input signals for the next Feynman logic gate based on the DNA reacting cascade, producing, in turn, two final output signals. The Feynman gate operated as the controlled NOT gate (CNOT), where one of the input channels controlled a NOT operation on another channel. Both logic gates represented a highly sophisticated combination of input‐controlled signal‐routing logic operations, resulting in redirecting chemical signals in different channels and performing orchestrated computing processes. The biomolecular reaction cascade responsible for the signal processing was realized by moving the solution from one reacting cell to another, including the reacting flow cells and electrochemical flow cells, which were organized in a specific network mimicking electronic computing circuitries. The designed system represents the first example of high complexity biocomputing processes integrating enzyme and DNA reactions and performing logically reversible signal processing.  相似文献   

3.
A half‐adder and a half‐subtractor have been realized using enzymatic reaction cascades performed in a flow cell device. The individual cells were modified with different enzymes and assembled in complex networks to perform logic operations and arithmetic functions. The modular design of the logic devices allowed for easy re‐configuration, enabling them to perform various functions. The final output signals, represented by redox species [Fe(CN)6]3?/4? or NADH/NAD+, were analyzed optically to derive the calculation results. These output signals might be applicable in the future for actuation processes, for example, substance release activated by logically processed signals.  相似文献   

4.
Conventional electronic circuits can perform multi‐level logic operations; however, this capability is rarely realized by biological logic gates. In addition, the question of how to close the gap between biomolecular computation and silicon‐based electrical circuitry is still a key issue in the bioelectronics field. Here we explore a novel split aptamer‐based multi‐level logic gate built from INHIBIT and AND gates that performs a net XOR analysis, with electrochemical signal as output. Based on the aptamer–target interaction and a novel concept of electrochemical rectification, a relayed charge transfer occurs upon target binding between aptamer‐linked redox probes and solution‐phase probes, which amplifies the sensor signal and facilitates a straightforward and reliable diagnosis. This work reveals a new route for the design of bioelectronic logic circuits that can realize multi‐level logic operation, which has the potential to simplify an otherwise complex diagnosis to a “yes” or “no” decision.  相似文献   

5.
Polymerase/nicking enzymes and nucleic‐acid scaffolds are implemented as DNA machines for the development of amplified DNA‐detection schemes, and for the design of logic gates. The analyte nucleic acid target acts, also, as input for the logic gates. In the presence of two DNA targets, acting as inputs, and appropriate DNA scaffolds, the polymerase‐induced replication of the scaffolds, followed by the nicking of the replication products, are activated, leading to the autonomous synthesis of the Mg2+‐dependent DNAzyme or the Mg2+‐dependent DNAzyme subunits. These biocatalysts cleave a fluorophore/quencher‐functionalized nucleic‐acid substrate, thus providing fluorescence signals for the sensing events or outputs for the logic gates. The systems are used to develop OR, AND, and Controlled‐AND gates, and the DNA‐analyte targets represent two nucleic acid sequences of the smallpox viral genome.  相似文献   

6.
We demonstrate the use of two different wavelength ranges of excitation light as inputs to remotely trigger the responses of the self‐assembled DNA devices (D‐OR). As an important feature of this device, the dependence of the readout fluorescent signals on the two external inputs, UV excitation for 1 min and/or near infrared irradiation (NIR) at 800 nm fs laser pulses, can mimic function of signal communication in OR logic gates. Their operations could be reset easily to its initial state. Furthermore, these DNA devices exhibit efficient cellular uptake, low cytotoxicity, and high bio‐stability in different cell lines. They are considered as the first example of a photo‐responsive DNA logic gate system, as well as a biocompatible, multi‐wavelength excited system in response to UV and NIR. This is an important step to explore the concept of photo‐responsive DNA‐based systems as versatile tools in DNA computing, display devices, optical communication, and biology.  相似文献   

7.
8.
A DNA‐encoding strategy is reported for the programmable regulation of the fluorescence properties of silver nanoclusters (AgNCs). By taking advantage of the DNA‐encoding strategy, aqueous AgNCs were used as signal transducers to convert DNA inputs into fluorescence outputs for the construction of various DNA‐based logic gates (AND, OR, INHIBIT, XOR, NOR, XNOR, NAND, and a sequential logic gate). Moreover, a biomolecular keypad that was capable of constructing crossword puzzles was also fabricated. These AgNC‐based logic systems showed several advantages, including a simple transducer‐introduction strategy, universal design, and biocompatible operation. In addition, this proof of concept opens the door to a new generation of signal transducer materials and provides a general route to versatile biomolecular logic devices for practical applications.  相似文献   

9.
Novel Janus nanoparticles with Au and mesoporous silica faces on opposite sides were prepared using a Pickering emulsion template with paraffin wax as the oil phase. These anisotropic colloids were employed as integrated sensing–actuating nanomachines for enzyme‐controlled stimuli‐responsive cargo delivery. As a proof of concept, we demonstrated the successful use of the Janus colloids for controlled delivery of tris(2,2’‐bipyridyl) ruthenium(II) chloride from the mesoporous silica face, which was grafted with pH‐sensitive gatelike scaffoldings. The release was mediated by the on‐demand catalytic decomposition of urea by urease, which was covalently immobilized on the Au face.  相似文献   

10.
Smart nanodevices that integrate molecular recognition and signal production hold great promise for the point‐of‐care (POC) diagnostic applications. Herein, the development of a DNA‐mediated proximity assembly of biochemical reactions, which was capable of sensing various bio‐targets and reporting easy‐to‐read signals is reported. The circuit was composed of a DNA hairpin‐locked catalytic cofactor with inhibited activity. Specific molecular inputs can trigger a conformational switch of the DNA locks through the mechanisms of toehold displacement and aptamer switching, exposing an active cofactor. The subsequent assembly of an enzyme/cofactor pair actuated a reaction to produce colorimetric or fluorescence signals for detecting target molecules. The developed system could be potentially applied to smart biosensing in molecular diagnostics and POC tests.  相似文献   

11.
DNA computation is considered a fascinating alternative to silicon-based computers; it has evoked substantial attention and made rapid advances. Besides realizing versatile functions, implementing spatiotemporal control of logic operations, especially at the cellular level, is also of great significance to the development of DNA computation. However, developing simple and efficient methods to restrict DNA logic gates performing in live cells is still a challenge. In this work, a series of DNA logic gates was designed by taking full advantage of the diversity and programmability of the G-quadruplex (G4) structure. More importantly, by further using the high affinity and specific endocytosis of cells to aptamer G4, an INHIBIT logic gate has been realized whose operational site is precisely restricted to specific live cells. The design strategy might have great potential in the field of molecular computation and smart bio-applications.  相似文献   

12.
Herein, we presented a novel logic gate based on an INHIBITION gate that performs parallel readouts. Logic gates performing INHIBITION and YES/OR were constructed using surface‐enhanced Raman scattering as optical outputs for the first time. The strategy allowed for simultaneous reading of outputs in one tube. The applicability of this strategy has been successfully exemplified in the construction of half‐adder using the two‐output logic gates as reporting gates. This reporting strategy provides additional design flexibility for dynamic DNA devices.  相似文献   

13.
New hetero‐oligophenylene derivative ( 2 ) was synthesized which exhibits aggregation‐induced emission enhancement (AIEE) in H2O/THF (80:20). The aggregates serve as a biological probe for three different proteins, that is bovine serum albumin (BSA), cytochrome c, and lysozyme, and DNA in contrasting modes. Further, among 29 metal ions tested, the contrasting fluorescence behavior of aggregates of 2 is observed with only Pb2+ and Pd2+ ions. Multiple output logic circuits based upon the fluorescence behavior between BSA and cytochrome c and between Pb2+ and Pd2+ ions are constructed.  相似文献   

14.
A simple, versatile, and label‐free DNA computing strategy was designed by using toehold‐mediated strand displacement and stem‐loop probes. A full set of logic gates (YES, NOT, OR, NAND, AND, INHIBIT, NOR, XOR, XNOR) and a two‐layer logic cascade were constructed. The probes contain a G‐quadruplex domain, which was blocked or unfolded through inputs initiating strand displacement and the obviously distinguishable light‐up fluorescent signal of G‐quadruplex/NMM complex was used as the output readout. The inputs are the disease‐specific nucleotide sequences with potential for clinic diagnosis. The developed versatile computing system based on our label‐free and modular strategy might be adapted in multi‐target diagnosis through DNA hybridization and aptamer‐target interaction.  相似文献   

15.
16.
通过色胺酮与苯肼反应生成一种新型的腙类化合物.在该化合物的DMF溶液中,用含有不同阴离子的四丁基铵盐测试了其对阴离子的识别能力.实验结果表明,加入F-,AcO-和H2PO-4后,溶液由黄色立即变为橙色,而加入Cl-,Br-,I-,ClO-4,NO-3和HSO-4离子则无变化.通过核磁共振波谱证实了探针的识别机制,并设计了一个四输入的分子逻辑门.  相似文献   

17.
A new bipyridyl derivative 1 bearing rhodamine B as visible fluorophore was designed, synthesized and characterized as a fluorescent and colorimetric sensor for metal ions. Interaction with Cu2+, Zn2+, Cd2+, Hg+, and Hg2+ ions was followed by UV/Vis and emission spectroscopy. Upon addition of these metal ions, different colorimetric and fluorescent responses were observed. “Off-on-off” (Cu2+, Zn2+, and Hg2+) and “off-on” (Hg+ and Cd2+) systems were obtained. Probe 1 was explored to mimic XOR and OR logic operations for the simultaneous detection of Hg+–Cu2+ and Hg+–Zn2+ pairs, respectively. DFT calculations were also performed to gain insight into the lowest-energy gas-phase conformation of free receptor 1 as well as the atomistic details of the coordination modes of the various metal ions.  相似文献   

18.
The positioning of enzymes on DNA nanostructures for the study of spatial effects in interacting biomolecular assemblies requires chemically mild immobilization procedures as well as efficient means for separating unbound proteins from the assembled constructs. We herein report the exploitation of free‐flow electrophoresis (FFE) for the purification of DNA origami structures decorated with biotechnologically relevant recombinant enzymes: the S‐selective NADP+/NADPH‐dependent oxidoreductase Gre2 from S. Cerevisiae and the reductase domain of the monooxygenase P450 BM3 from B. megaterium. The enzymes were fused with orthogonal tags to facilitate site‐selective immobilization. FFE purification yielded enzyme–origami constructs whose specific activity was quantitatively analyzed. All origami‐tethered enzymes were significantly more active than the free enzymes, thereby suggesting a protective influence of the large, highly charged DNA nanostructure on the stability of the proteins.  相似文献   

19.
Fluorescence‐switch‐based logic devices are very sensitive compared with most of the reported devices based on UV/Vis absorption systems. Herein, we demonstrate that a simple molecule, 5,10,15,20‐tetra‐(4‐aminophenyl)porphyrin (TAPP), shows protonation‐induced multiple emission switches through intramolecular charge transfer and/or aggregation‐caused quenching. Highly sensitive INHIBIT and XOR logic gates can be achieved by combining the intermolecular assembly with the intramolecular photoswitching of diprotonated TAPP (TAPPH22+). In addition, molecular simulations have been performed by DFT for a better understanding of the emission‐switching processes.  相似文献   

20.
Here, a novel multi‐stimuli‐responsive fluorescence probe is developed by incorporating spiropyran group into the coumarin‐substituted polydiacetylene (PDA) vesicles. The fluorescence of PDA can be turned on upon heating, and can be quenched upon exposure to UV light irradiation or pH stimuli owing to the fluorescene resonance energy transfer (FRET) between the red‐phase PDA and the open merocyanine (MC) form of spiropyran. Moreover, we have designed and experimentally realized a set of logic gate operations for the first time based on the fluorescence modulation of the designed system upon thermal, photo, and pH stimuli. This novel type of resettable logic gates augur well for practical applications in information storage, optical recording, and sensing in complicated microenvironments.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号