首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The following assignment problem is considered. There are n activities to be assigned to n personnel. The cost of assigning activity i to person j is c ij . It is required to find all the efficient assignments, i.e. those for which there exists no other assignment which has at least as small costs for each person and strictly smaller costs for at least one person. The main results are as follows. In Theorem 1 it is shown that whereas, for many integer problems, the standard scalar weighting factor approach will not produce all the efficient solutions, in this case it will. In Theorem 2 it is shown that when each efficient vector is determined by a single assignment solution, the efficient set is identical to the set of efficient vertices of the convex hull of the assignment solution set.  相似文献   

2.
This paper presents an optimal scheduling algorithm for minimizing set-up costs in the parallel processing shop while meeting workload balancing restrictions.There are M independent batch type jobs which have sequence dependent set-up costs and N parallel processing machines. Each of the M jobs must be processed on exactly one of the N available machines. It is desirable to minimize total changeover costs with the restriction that each machine workload assignment T n be within P units of the average machine assignment. The paper describes a static problem in which all jobs are available at time zero. The sequence dependent change over costs are identical for each machine. An extension of the algorithm handles nonidentical processor problems.A combinatorial programming approach to the problem is used. For the special case of identical processors, the problem can be treated as a multi-salesman travelling salesman problem. A general branch and bound algorithm and numerical results are given.  相似文献   

3.
We consider a due-window assignment problem on identical parallel machines, where the jobs have equal processing times and job-dependent earliness-tardiness costs. We would like to determine a ‘due window’ during which the jobs can be completed at no cost and to obtain a job schedule in which the jobs are penalized if they finish before or after the due window. The objective is to minimize the total earliness and tardiness job penalty, plus the cost associated with the size of the due window. We present an algorithm that can solve this problem in O(n3) time, which is an improvement of the O(n4) solution procedure developed by Mosheiov and Sarig.  相似文献   

4.
A 2-coloring of the n-cube in the n-dimensional Euclidean space can be considered as an assignment of weights of 1 or 0 to the vertices. Such a colored n-cube is said to be balanced if its center of mass coincides with its geometric center. Let B n,2k be the number of balanced 2-colorings of the n-cube with 2k vertices having weight 1. Palmer, Read, and Robinson conjectured that for n≥1, the sequence \(\{B_{n,2k}\}_{k=0,1,\ldots,2^{n-1}}\) is symmetric and unimodal. We give a proof of this conjecture. We also propose a conjecture on the log-concavity of B n,2k for fixed k, and by probabilistic method we show that it holds when n is sufficiently large.  相似文献   

5.
This paper considers repositioning empty containers between multi-ports over multi-periods with stochastic demand and lost sales. The objective is to minimize the total operating cost including container-holding cost, stockout cost, importing cost and exporting cost. First, we formulate the single-port case as an inventory problem over a finite horizon with stochastic import and export of empty containers. The optimal policy for period n is characterized by a pair of critical points (A n , S n ), that is, importing empty containers up to A n when the number of empty containers in the port is fewer than A n ; exporting empty containers down to S n when the number of empty containers in the port is more than S n ; and doing nothing, otherwise. A polynomial-time algorithm is developed to determine the two thresholds, that is, A n and S n , for each period. Next, we formulate the multi-port problem and determine a tight lower bound on the cost function. On the basis of the two-threshold optimal policy for a single port, a polynomial-time algorithm is developed to find an approximate repositioning policy for multi-ports. Simulation results show that the proposed approximate repositioning algorithm performs very effectively and efficiently.  相似文献   

6.
This paper considers dynamic single- and multi-product inventory problems in which the demands in each period are independent and identically distributed random variables. The problems considered have the following common characteristics. At the beginning of each period two order quantities are determined for each product. A “normal order” quantity with a constant positive lead time of λ n periods and an “emergency order” quantity with a lead time of λ e periods, where λ e = λ n - 1. The ordering decisions are based on linear procurement costs for both methods of ordering and convex holding and penalty costs. The emergency ordering costs are assumed to be higher than the normal ordering costs. In addition, future costs are discounted.For the single-product problem the optimal ordering policy is shown to be the same for all periods with the exception of the last period in the N-period problem. For the multi-product problem the one- and N-period optimal ordering policy is characterized where it is assumed that there are resource constraints on the total amount that can be ordered or produced in each period.  相似文献   

7.
A single round robin tournament can be described as a league of a set T of n teams (n even) to be scheduled such that each team plays exactly once against each other team and such that each team plays exactly once per period resulting in a set P of n?1 periods. Matches are carried out at one of the stadiums of both opponents. A team playing twice at home or twice away in two consecutive periods is said to have a break in the latter of both periods. There is a vast field of requests arising in real-world problems. For example, the number of breaks is to be minimized due to fairness reasons. It is well known that at least n?2 breaks must occur. We focus on schedules having the minimum number of breaks. Costs corresponding to each possible match are given and the objective is to minimize the sum of cost of arranged matches. Then, sports league scheduling can be seen as a hard combinatorial optimization problem. We develop a branch-and-price approach in order to find optimal solutions.  相似文献   

8.
In a general k-level uncapacitated facility location problem (k-GLUFLP), we are given a set of demand points, denoted by D, where clients are located. Facilities have to be located at a given set of potential sites, which is denoted by F in order to serve the clients. Each client needs to be served by a chain of k different facilities. The problem is to determine some sites of F to be set up and to find an assignment of each client to a chain of k facilities so that the sum of the setup costs and the shipping costs is minimized. In this paper, for a fixed k, an approximation algorithm within a factor of 3 of the optimum cost is presented for k-GLUFLP under the assumption that the shipping costs satisfy the properties of metric space. In addition, when no fixed cost is charged for setting up the facilities and k=2, we show that the problem is strong NP-complete and the constant approximation factor is further sharpen to be 3/2 by a simple algorithm. Furthermore, it is shown that this ratio analysis is tight.  相似文献   

9.
A classical result in number theory is Dirichlet’s theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly k prime factors for k > 1. Building upon a proof by E.M. Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree nx with k prime factors such that a fixed quadratic equation has exactly 2 k solutions modulo n.  相似文献   

10.
The existence of reliable and flexible FORTRAN programs for integer linear programming has recently enabled the development of very efficient algorithms for the travelling salesman problem. The main characteristic of these algorithms is the relaxation of most of the constraints of the problem during its solution. The same approach can be used for the solution of the m-salesmen problem in which m salesmen starting from the same city must visit only once n cities at minimum cost. The number of salesmen can be fixed in advance or allowed to vary, upper and lower bounds set on the number of salesmen and even fixed costs associated with the salesmen. The results obtained so far are very encouraging. Problems of up to 100 cities have been solved optimally for the m-travelling salesmen case and other more complex problems are currently under study.  相似文献   

11.
Estimating real-world parameter values by means of Monte-Carlo/stochastic simulation is usually accomplished by carrying out a number ‘n’ of computer runs, each using random numbers taken from a pseudo-random number generator. In order to improve the accuracy of the estimate (reduce the estimate's variance), the most common recourse is to increase n, as the estimate's variance is inversely proportional to n. Variance reduction techniques provide an alternative to increasing n. They use statistical approaches which obtain more information from the computer runs conducted, or control and direct the pseudo-random streams to optimize the information likely to be produced by a run.  相似文献   

12.
We extend Wolstenholme’s theorem to hyperharmonic numbers. Then, we obtain infinitely many congruence classes for hyperharmonic numbers using combinatorial methods. In particular, we show that the numerator of any hyperharmonic number in its reduced fractional form is odd. Then we give quantitative estimates for the number of pairs (n, r) lying in a rectangle where the corresponding hyperharmonic number \({ h_n^{(r)} }\) is divisible by a given prime number p. We also provide p-adic value lower bounds for certain hyperharmonic numbers. It is an open problem that given a prime number p, there are only finitely many harmonic numbers h n which are divisible by p. We show that if we go to the higher levels r ≥  2, there are infinitely many hyperharmonic numbers \({ h_n^{(r)} }\) which are divisible by p. We also prove a finiteness result which is effective.  相似文献   

13.
Given a tournament T?=?(X, A), we consider two tournament solutions applied to T: Slater’s solution and Copeland’s solution. Slater’s solution consists in determining the linear orders obtained by reversing a minimum number of directed edges of T in order to make T transitive. Copeland’s solution applied to T ranks the vertices of T according to their decreasing out-degrees. The aim of this paper is to compare the results provided by these two methods: to which extent can they lead to different orders? We consider three cases: T is any tournament, T is strongly connected, T has only one Slater order. For each one of these three cases, we specify the maximum of the symmetric difference distance between Slater orders and Copeland orders. More precisely, thanks to a result dealing with arc-disjoint circuits in circular tournaments, we show that this maximum is equal to n(n???1)/2 if T is any tournament on an odd number n of vertices, to (n 2???3n?+?2)/2 if T is any tournament on an even number n of vertices, to n(n???1)/2 if T is strongly connected with an odd number n of vertices, to (n 2???3n???2)/2 if T is strongly connected with an even number n of vertices greater than or equal to 8, to (n 2???5n?+?6)/2 if T has an odd number n of vertices and only one Slater order, to (n 2???5n?+?8)/2 if T has an even number n of vertices and only one Slater order.  相似文献   

14.
We prove that, for any real numbers ξ ≠ 0 and ν, the sequence of integer parts [ξ2 n  + ν], n = 0, 1, 2, . . . , contains infinitely many composite numbers. Moreover, if the number ξ is irrational, then the above sequence contains infinitely many elements divisible by 2 or 3. The same holds for the sequence [ξ( ? 2) n  + ν n ], n = 0, 1, 2, . . . , where ν 0, ν 1, ν 2, . . . all lie in a half open real interval of length 1/3. For this, we show that if a sequence of integers x 1, x 2, x 3, . . . satisfies the recurrence relation x n+d  = cx n  + F(x n+1, . . . , x n+d-1) for each n  ≥  1, where c ≠ 0 is an integer, \({F(z_1,\dots,z_{d-1}) \in \mathbb {Z}[z_1,\dots,z_{d-1}],}\) and lim n→ ∞|x n | = ∞, then the number |x n | is composite for infinitely many positive integers n. The proofs involve techniques from number theory, linear algebra, combinatorics on words and some kind of symbolic computation modulo 3.  相似文献   

15.
We extend a classical single-machine due-window assignment problem to the case of position-dependent processing times. In addition to the standard job scheduling decisions, one has to assign a time interval (due-window), such that jobs completed within this interval are assumed to be on time and not penalized. The cost components are: total earliness, total tardiness and due-window location and size. We introduce an O(n3) solution algorithm, where n is the number of jobs. We also investigate several special cases, and examine numerically the sensitivity of the solution (schedule and due-window) to the different cost parameters.  相似文献   

16.
Every real polynomial of degree n in one variable with root ?1 can be represented as the Schur-Szeg? composition of n ? 1 polynomials of the form (x + 1) n?1(x + a i ), where the numbers a i are uniquely determined up to permutation. Some a i are real, and the others form complex conjugate pairs. In this note, we show that for each pair (ρ, r), where 0 ? ρ, r ? [n/2], there exists a polynomial with exactly ρ pairs of complex conjugate roots and exactly r complex conjugate pairs in the corresponding set of numbers a i .  相似文献   

17.
We consider the skeleton of the polytope of pyramidal tours. A Hamiltonian tour is called pyramidal if the salesperson starts in city 1, then visits some cities in increasing order of their numbers, reaches city n, and returns to city 1 visiting the remaining cities in decreasing order. The polytope PYR(n) is defined as the convex hull of the characteristic vectors of all pyramidal tours in the complete graph K n . The skeleton of PYR(n) is the graph whose vertex set is the vertex set of PYR(n) and the edge set is the set of geometric edges or one-dimensional faces of PYR(n). We describe the necessary and sufficient condition for the adjacency of vertices of the polytope PYR(n). On this basis we developed an algorithm to check the vertex adjacency with linear complexity. We establish that the diameter of the skeleton of PYR(n) equals 2, and the asymptotically exact estimate of the clique number of the skeleton of PYR(n) is Θ(n2). It is known that this value characterizes the time complexity in a broad class of algorithms based on linear comparisons.  相似文献   

18.
For any prime number p let Ωp be the p-adic counterpart of the complex numbers C. In this paper we investigate the class of p-adic UHF Banach algebras. A p-adic UHF Banach algebra is any unital p-adic Banach algebra A of the form \(A = \overline {U{M_n}} \), where (Mn) is an increasing sequence of p-adic Banach subalgebras of M such that each Mn is generated over Ωp by an algebraic system of matrix units {e ij ( n) | 1 ≤ i, jpn }. The main result is that the supernatural number associated to a p-adic TUHF Banach algebra is an invariant of the algebra.  相似文献   

19.
In the paper, the additive complexity of matrices formed by positive integer powers of greatest common divisors and least common multiples of the indices of the rows and columns is considered. It is proved that the complexity of the n × n matrix formed by the numbers GCDr(i, k) over the basis {x + y} is asymptotically equal to rn log2n as n→∞, and the complexity of the n × n matrix formed by the numbers LCMr(i, k) over the basis {x + y,?x} is asymptotically equal to 2rn log2n as n→∞.  相似文献   

20.
The problem of minimizing the maximal weighted absolute lateness (MWAL) is known to be NP-hard. The due-date assignment part of MWAL for a given sequence has been shown in the literature to be solved on a single machine in O(n2) time. In this paper, we study a more general version of the problem with asymmetric cost (nonidentical earliness and tardiness weights). We introduce a linear-programming-based O(n) solution for this case. We also extend our proposed solution procedure to other machine settings such as flow-shop and parallel machines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号