首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the molecular complex between the chiral selector (+)1-(3-allylpropyl)-(5R,8S,10R)-N,N-diethyl-N′-[6-methyl ergolin-8-yl]urea, C23H33N4O, (allyl-terguride) and the HPLC more retained (S)-enantiomer of dansyl-tryptophan, C23H23N3O4S, has been determined. It is a part of the study on the chiral recognition mechanism of ergot alkaloids, when used in chiral stationary phases (CSPs) for the separation of racemic mixture of organic acids by liquid chromatographic methods. At the pH of crystallization conditions, which mimic those corresponding to the best enantiodiscriminative activity, each molecule of (S)-dansyl-tryptophan is locked to a molecule of allyl-terguride by hydrogen bonds and by C–H···π edge-to-face interactions.  相似文献   

2.
The structure of (+)1-(3-allylpropyl)-(5R,8S,10R)-N,N-diethyl-N-[6-methylergolin-8-yl]urea, C22H33N4O (allyl-terguride), has been determined as part of a study on the chiral recognition mechanism of ergot alkaloids when they are used as the chiral stationary phase for the separation of racemic mixtures in liquid chromatographic methods. At the pH of the solution used for the crystallization, the molecules of allyl-terguride are protonated at N(6). All bond distances and angles are in the expected ranges. In the asymmetric unit one hydroxide ion is present. Hydrogen bonds join molecules of allyl-terguride in pairs along the b axis, connecting O(2) of the hydroxide ion to O(1) of one molecule and to N(2) and N(6) of another.  相似文献   

3.
4.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

5.
Yuji Takashima 《Tetrahedron》2010,66(1):197-2519
A general approach to the (S)- and (R)-isoflavans was invented, and efficiency of the method was demonstrated by the synthesis of (S)-equol ((S)-3), (R)-sativan ((R)-4), and (R)-vestitol ((R)-5). The key step is the allylic substitution of (S)-6a (Ar1=2,4-(MeO)2C6H3) and (R)-6b (Ar1=2,4-(BnO)2C6H3) with copper reagents derived from CuBr·Me2S and Ar2-MgBr (7a, Ar2=4-MeOC6H4; 7b, 2,4-(MeO)2C6H3; 7c, 2-MOMO-4-MeOC6H3), furnishing anti SN2′ products (R)-8a and (S)-8b,c with 93-97% chirality transfer in 60-75% yields. The olefinic part of the products was oxidatively cleaved and the Me and Bn groups on the Ar1 moieties was then removed. Finally, phenol bromide 9a and phenol alcohols 9b,c underwent cyclization with K2CO3 and the Mitsunobu reagent to afford (S)-3 and (R)-4 and -5, respectively.  相似文献   

6.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

7.
The absolute configurations of the side chains of polyhydroxylated steroids from the starfish Henricia derjugini were determined by Moshers method using 1H NMR spectra of R-(+)- and S-(–)--methoxy--(trifluoromethyl)phenylacetates of these compounds. The chiral centers have the (24S) configuration in a steroidal hexaol and henricioside H1, the (24R,25S) configuration in henricioside H2, and the (24R, 25R) configuration in henricioside H3.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2530–2533, November, 2004.  相似文献   

8.
Glaser  Robert  Adin  Itay  Drouin  Marc  Michel  André 《Structural chemistry》1994,5(3):197-203
The anorexic drug (+)-(2S, 3S, 4S)-phendimetrazine-2R, 3R)-bitartarate crystallized in the orthorhombic space groupP212121 and at 293 Ka=7.7710(4),b=13.1379(7),c=15.9913(9) Å,V=1632.6(2) Å3,Z=4,R(F)=0.062, andR w (F)=0.026. A chair conformation 2,3-trans-1,4-oxazine ring with equatorially oriented 2-phenyl,3-methyl, andN-methyl substituents was found as predicted by an earlier reported solid-state CP-MAS13C-NMR investigation of crystalline (±)-phendimetrazine bitartarate. The O-CH2-CH2-N torsion angle of –58.4(6)° in the solid-state agrees nicely with the 56.0(7)° dihedral angle value estimated by1H NMR spectroscopy for the major (equatorialN-methyl) phendimetrazine mesylate species in CD2Cl2 solution. A common solid-state conformational arrangement was found for (+)-phendimetrazine and a series of six other anorexic drugs structurally analogous to (+)-(2S, 3S)-pseudoephedrine. In this arrangement, NCH(Me)CPh has (S)-configuration, there is a (–)-gaucheMe-CH-C-Ph torsion angle, an antiperiplanarN-CH-C-Ph torsion angle, and the phenyl ring approximately eclipses the C-H bond of the attached carbon (e.g., H-C-Cipso-Cortho ca. 4° for 2,3-transphendimetrazine). Nonbonded interactions involving the 3-methyl and the 2-phenyl groups open up the H-C-Cipso-Cortho angle in a series of solid-state structures containing the epimeric (–)-(2R, 3S)-ephedrine moiety (e.g., ca. 45° for molecular mechanics calculated 2,3-cis-phendimetrazine model).  相似文献   

9.
We present the crystal and molecular structure of two key compounds of a new synthesis strategy for isomers of natural (2S,3R,4S)‐4‐hydroxyisoleucines, 2,3,5,6,7,8‐hexa­hydro‐3‐(1‐hydroxy‐1‐methyl‐2‐oxo­propyl)‐6,8‐methano‐7,7,8a‐tri­meth­yl‐5H‐1,4‐benzoxazin‐2‐one, C16H23NO4, and 2,3,5,6,7,8‐hexa­hydro‐3‐(1‐methyl‐2‐oxo­propyl)‐6,8‐methano‐7,7,8a‐tri­meth­yl‐5H‐1,4‐benzoxazin‐2‐one, C16H23NO3. A new optically pure chiral oxazinone auxiliary derived from (1R,2R,5R)‐2‐hydroxy­pinan‐3‐one was used.  相似文献   

10.
The title compounds, rac‐(1′R,2R)‐tert‐butyl 2‐(1′‐hydroxyethyl)‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C17H20N2O6, (I), rac‐(1′S,2R)‐tert‐butyl 2‐[1′‐hydroxy‐3′‐(methoxycarbonyl)propyl]‐3‐(2‐nitrophenyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C20H24N2O8, (II), and rac‐(1′S,2R)‐tert‐butyl 2‐(4′‐bromo‐1′‐hydroxybutyl)‐5‐oxo‐2,5‐dihydro‐1H‐pyrrole‐1‐carboxylate, C13H20BrNO4, (III), are 5‐hydroxyalkyl derivatives of tert‐butyl 2‐oxo‐2,5‐dihydropyrrole‐1‐carboxylate. In all three compounds, the tert‐butoxycarbonyl (Boc) unit is orientated in the same manner with respect to the mean plane through the 2‐oxo‐2,5‐dihydro‐1H‐pyrrole ring. The hydroxyl substituent at one of the newly created chiral centres, which have relative R,R stereochemistry, is trans with respect to the oxo group of the pyrrole ring in (I), synthesized using acetaldehyde. When a larger aldehyde was used, as in compounds (II) and (III), the hydroxyl substituent was found to be cis with respect to the oxo group of the pyrrole ring. Here, the relative stereochemistry of the newly created chiral centres is R,S. In compound (I), O—H...O hydrogen bonding leads to an interesting hexagonal arrangement of symmetry‐related molecules. In (II) and (III), the hydroxyl groups are involved in bifurcated O—H...O hydrogen bonds, and centrosymmetric hydrogen‐bonded dimers are formed. The Mukaiyama crossed‐aldol‐type reaction was successful when using the 2‐nitrophenyl‐substituted hydroxypyrrole, or the unsubstituted hydroxypyrrole, and boron trifluoride diethyl ether as catalyst. The synthetic procedure leads to a syn configuration of the two newly created chiral centres in all three compounds.  相似文献   

11.
The crystal structure of the new chiral complex (1R,2R)‐1,2‐di­phenyl‐1,2‐bis(8‐quinoline­sulfonyl­amino)‐ ethyl­enedi­amine–acetone (1/1), C32H26N4O4S2.C3H6O, is reported. The conformation of the C32H26N4O4S2 (BQSDA) mol­ecule is determined by a bifurcated N—H?N hydrogen‐bond system. The acetone of solvation is linked to the BQSDA mol­ecule by an N—H?O hydrogen bond.  相似文献   

12.
The chiral metalloporphyrin (dibenzoylmethylene‐κC)(ethanol‐κO){5,10,15,20‐tetrakis[(1S,4R,5R,8S)‐1,2,3,4,5,6,7,8‐octahydro‐1,4:5,8‐dimethanoanthracen‐9‐yl]porphyrinato‐κ4N}ruthenium(II)–ethanol–dichloromethane (1/2/2), [Ru(C84H76N4)(C15H10O2)(C2H6O)]·2C2H6O·2CH2Cl2, and its enantiomorph were prepared from enantiomerically pure porphyrins. The enantiomers are potential versatile catalysts for asymmetric cyclopropanation, aziridination or epoxidation. In each compound, the rather large dibenzoylcarbene group is squeezed between four columnar 1,2,3,4,5,6,7,8‐octahydro‐1,4:5,8‐dimethanoanthracen‐9‐yl groups at the meso positions resulting in a doming deformation of the porphyrin core. The dibenzoylcarbene group has an anti conformation. The benzoyl O atoms make short van der Waals contacts (< 2.6 Å) with the methine groups of the chiral columnar substituents at the 10 and 20 positions of the porphyrin rings. A hydrogen‐bonded supramolecular chain is formed parallel to the b axis by interactions between the benzoyl O atom and the hydroxy groups of the coordinated and uncoordinated ethanol molecules.  相似文献   

13.
In the title compound, C20H16Cl2O4S2, the mol­ecules lie across centres of inversion. A single type of intermolecular C—H?O hydrogen bond, with a C?O distance of 3.254 (3) Å and a C—H?O angle of 132°, links the mol­ecules into ladders whose uprights form C(6) chains and whose rungs enclose centrosymmetric R(22) rings.  相似文献   

14.
In the racemic crystals of (1S,2R)‐ or (1R,2S)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (I), the enantiomeric mol­ecules form a dimeric structure via the N—H?O cyclic hydrogen bond of the carbamoyl moieties. In the chiral crystals of (—)‐(1S,2R)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (II), the N—­H?O intermolecular hydrogen bond forms a zigzag chain around the twofold screw axis. The melting points and calculated densities of (I) and (II) are 446 and 396 K, and 1.481 and 1.445 Mg m?3, respectively.  相似文献   

15.
Oxazolidin‐2‐ones are widely used as protective groups for 1,2‐amino alcohols and chiral derivatives are employed as chiral auxiliaries. The crystal structures of four differently substituted oxazolidinecarbohydrazides, namely N′‐[(E)‐benzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12N3O3, (I), N′‐[(E)‐2‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (II), (4S)‐N′‐[(E)‐4‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (III), and (4S)‐N′‐[(E)‐2,6‐dichlorobenzylidene]‐N,3‐dimethyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C13H13Cl2N3O3, (IV), show that an unexpected mild‐condition racemization from the chiral starting materials has occurred in (I) and (II). In the extended structures, the centrosymmetric phases, which each crystallize with two molecules (A and B) in the asymmetric unit, form A+B dimers linked by pairs of N—H...O hydrogen bonds, albeit with different O‐atom acceptors. One dimer is composed of one molecule with an S configuration for its stereogenic centre and the other with an R configuration, and possesses approximate local inversion symmetry. The other dimer consists of either R,R or S,S pairs and possesses approximate local twofold symmetry. In the chiral structure, N—H...O hydrogen bonds link the molecules into C(5) chains, with adjacent molecules related by a 21 screw axis. A wide variety of weak interactions, including C—H...O, C—H...Cl, C—H...π and π–π stacking interactions, occur in these structures, but there is little conformity between them.  相似文献   

16.
The preparation of ylides of the general structure is described. Thermolysis of 14a (R = CH3, R' = H, Ar = C6H5) gave dimethylamine and 2,4-dimethyl-6-phenyl-s-triazine. Thermolysis of ylides 14b (R = C6H5; R' = CH3, Ar = C6H5) and 14c (R = C6H5, R' = CH3, Ar = p-tolyl) gave dimethylamine, ArCH = NCH3 and 1-methyl-2-Ar-4,6-diphenyl-1,2-dihydro-s-triazines ( 19a,b ). Triazines 19a and 19b were also prepared by condensation of N-methylbenzamidine with benzaldehyde and p-tolualdehyde, respectively. Thermolysis of 14d (R = C6H5, R1 = CH2C6H5,Ar = C6H5) gave 1-benzyl-2,4,6-triphenyl-1,2-dihydro-s-triazine ( 19c ) and N-benzylidenebenzylamine. Mechanistic aspects of these reactions are discussed.  相似文献   

17.
Four new thioantimonates(III) with compositions [(C3H10NO)(C3H10N)][Sb8S13] ( 1 ) (C3H9NO = 1‐amino‐3‐propanol, C3H9N = propylamine), [(C2H8NO)(C2H8N)(CH5N)][Sb8S13] ( 2 ) (C2H7NO = ethanolamine, C2H7N = ethylamine, CH5N = methylamine), [(C6H16N2)(C6H14N2)][Sb6S10] ( 3 ) (C6H14N2 = 1,2‐diaminocyclohexane) and [C8H22N2][Sb4S7] ( 4 ) (C8H20N2 = 1,8‐diaminooctane) were synthesized under solvothermal conditions. Compound 1 : triclinic space group P$\bar{1}$ , a = 6.9695(6) Å, b = 13.8095(12) Å, c = 18.0354(17) Å, α = 98.367(11), β = 96.097(11) and γ = 101.281(11)°; compound 2 : monoclinic space group P21/m, a = 7.1668(5), b = 25.8986(14), c = 16.0436(11) Å, β = 96.847(8)°; compound 3 : monoclinic space group P21/n, a = 11.6194(9), b = 10.2445(5) Å, c = 27.3590(18) Å, β = 91.909(6)°; compound 4 : triclinic space group P$\bar{1}$ , a = 7.0743(6), b = 12.0846(11), c = 13.9933(14) Å, α = 114.723(10), β = 97.595(11), γ = 93.272(11)°. The main structural feature of the two atoms thick layered [Sb8S13]2– anion in 1 are large nearly rectangular pores with dimensions 11.2 × 11.7 Å. The layers are stacked perpendicular to [100] to form tunnels being directed along [100]. In contrast to 1 the structure of 2 contains a [Sb8S13]2– chain anion with Sb12S12 pores measuring about 8.9 × 11.5 Å. Only if longer Sb–S distances are considered as bonding interactions a layered anion is formed. The chain anion [Sb6S10]2– in compound 3 is unique and is constructed by corner‐sharing SbS3 pyramids. Two symmetry‐related single chains consisting of alternating SbS3 units and Sb3S3 rings are bound to Sb4S4 rings in chair conformation. Finally, in the structure of 4 the SbS3 and SbS4 moieties are joined corner‐linked to form a chain of alternating SbS4 units and (SbS3)3 blocks. Neighboring chains are connected into sheets that contain relatively large Sb10S10 heterorings. The sheets are further connected by sulfur atoms generating four atoms thick double sheets.  相似文献   

18.
The chloro­form solvate of uncarine C (pteropodine), (1′S,3R,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octa­hydro‐1′‐methyl‐2‐oxospiro­[3H‐indole‐3,6′(4′aH)‐[1H]­pyrano­[3,4‐f]indolizine]‐4′‐carboxyl­ic acid methyl ester, C21H24N2O4·CHCl3, has an absolute configuration with the spiro C atom in the R configuration. Its epimer at the spiro C atom, uncarine E (isopteropodine), (1′S,3S,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octahydro‐1′‐methyl‐2‐oxospiro[3H‐indole‐3,6′(4′aH)‐[1H]pyrano[3,4‐f]indolizine]‐4′‐carboxylic acid methyl ester, C21H24N2O4, has Z′ = 3, with no solvent. Both form intermolecular hydrogen bonds involving only the ox­indole, with N?O distances in the range 2.759 (4)–2.894 (5) Å.  相似文献   

19.
Conventional transition-state theory is used for extrapolating rate coefficients for reactions of O atoms with alkanes to temperatures above the range of experimental data. Expressions are developed for estimating structural properties of the activated complex necessary for calculating enthalpies and entropies of activation. Particular attention is given to the problem of the effect of the O atom adduct on the internal rotations in the activated complex. Differences between primary, secondary, and tertiary attack are discussed, and the validity of representing the activated complexes of all O + alkane reactions by a fixed set of vibrational frequencies and other internal modes is evaluated. Experimental data for reactions of O atoms with 15 different alkanes (CH4, C2H6, C3H8, C4H10, C5H12, C6H14, C7H16, C8H18, i–C4H10, (CH3)4C, (CH3)2CHCH(CH3)2, (CH3)3CC(CH3)3, c–C5H10, c–C6H12, c–C7H14) are reviewed. The following approximate expressions for ΔS?(298) and E(298), the entropy and energy of activation, respectively, are consistent with the experimental data and with the calculations: where nC = number of carbon atoms in the alkane and nH = the number of “equivalent” H atoms. Using the conventional transition state theory expression, k(298) = 1015.06 exp(ΔS?/R) exp(–E(298)/298R) L mol?1s?1, one then obtains: These expressions agree with experimental values within a factor approximately 2 for alkanes larger than C3H8.  相似文献   

20.
The reduction of prochiral ketones using chiral reducing reagents, prepared from lithium aluminum hydride and (-)-(1R, 2S, 3S, 5R)-10-anilinopinanediol (5) and (-)-(1R, 2S, 3S, 5R)-10-N-methylanilinopinanediol (6), affords chiral secondary alcohols in useful chemical yields (70 ~ 93%) but in low optical purity (8 ~ 33% ee). Modifiers 5 and 6 are synthesized from (lR)-(-)-β-pinene in three steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号