首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of water‐soluble siloxane polymers with pendent phosphorylcholine (PC) and sulfobetaine (SB) zwitterions was prepared using thiol‐ene “click” chemistry. Specifically, well‐defined vinyl‐substituted siloxane homopolymers and block copolymers were functionalized with small molecule zwitterionic thiols at room temperature. Rapid and quantitative substitution of the pendent vinyl groups was achieved, and zwitterionic polysiloxanes of narrow molecular weight distribution were obtained. The PC‐ and SB‐substituted polymers were found to be readily soluble in pure, salt‐free water. Critical micelle concentrations (CMCs) of these polymers in water were measured using a pyrene fluorescence probe, with CMC values estimated to be <0.01 g/L. Polymer aggregates were studied by dynamic light scattering, and the micelles generated from the PC block copolymers were visualized, after drying, by transmission electron microscopy. Aqueous solutions of these zwitterionic polysiloxanes significantly reduced the oil‐water interfacial surface tension, functioning as polymer amphiphiles that lend stability to oil‐in‐water emulsions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 127–134  相似文献   

2.
Hydrophilic interaction liquid‐chromatography (HILIC) in conjunction with diode array detection has been applied for the separation of selected‐water‐soluble vitamins using an end‐capped HILIC‐diol column. Vitamins with significant biological importance, such as thiamine (B1), riboflavin (B2), nicotinic acid (B3), nicotinamide (B3), pyridoxine (B6), folic acid (B9), cyanocobalamin (B12) and ascorbic acid (vitamin C) were simultaneously separated. Chromatographic conditions including type and percentage of organic modifier in the mobile phase, pH, type and concentration of buffer salt and flow rate were investigated. ACN was shown to offer superior separation for the compounds tested as compared to methanol, isopropanol and THF. Isocratic separation and analysis were achieved for six vitamins (B1, B2, nicotinic acid/nicotinamide, B6 and C) at ACN–H2O 90:10, containing ammonium acetate 10 mM, triethylamine 20 mM, pH 5.0, using a flow rate of 0.8 mL/min, while a gradient was necessary to resolve a mixture of all eight water‐soluble vitamins. The HILIC method was validated and successfully applied to the analysis of a pharmaceutical formulation and an energy drink negating the need for time consuming clean‐up steps.  相似文献   

3.
The retention behaviour of amino acids was studied in hydrophilic LC on zwitterionic stationary phases. Evaluation of the influences of acetonitrile/water content, ammonium acetate (NH4Ac) concentration and mobile phase pH values was performed. Fourteen amino acids were tested and they were all retained to varying extents, with poorer retention in high water content eluents. The linear relationship between the logarithm of retention factor and log(water content) indicated that adsorption dominated or at least was partly involved in the separation mechanism. Electrostatic and hydrophilic interactions also contributed to the retention of these amino acids under different separation conditions with various mobile phase pH values and NH4Ac concentrations. Thus, the overall retention mechanism could be explained as a combination of adsorption, electrostatic and hydrophilic interactions. The magnitude and contribution of each mechanism is dependent on the nature of the analyte and the separation conditions applied.  相似文献   

4.
In this study, the retention behavior and selectivity differences of water‐soluble vitamins were evaluated with three types of polar stationary phases (i.e. an underivatized silica phase, an amide phase, and an amino phase) operated in the hydrophilic interaction chromatographic mode with ESI mass spectrometric detection. The effects of mobile phase composition, including buffer pH and concentration, on the retention and selectivity of the vitamins were investigated. In all stationary phases, the neutral or weakly charged vitamins exhibited very weak retention under each of the pH conditions, while the acidic and more basic vitamins showed diverse retention behaviors. With the underivatized silica phase, increasing the salt concentration of the mobile phase resulted in enhanced retention of the acidic vitamins, but decreased retention of the basic vitamins. These observations thus signify the involvement of secondary mechanisms, such as electrostatic interaction in the retention of these analytes. Under optimized conditions, a baseline separation of all vitamins was achieved with excellent peak efficiency. In addition, the effects of water content in the sample on retention and peak efficiency were examined, with sample stacking effects observed when the injected sample contained a high amount of water.  相似文献   

5.
Statistical copolymers of 2‐hydroxyethyl methacrylate (HEMA) and 2‐diethylaminoethyl methacrylate (DEA) were synthesized at 50 °C by free‐radical copolymerization in bulk and in a 3 mol L?1 N,N′‐dimethylformamide solution with 2,2′‐azobisisobutyronitrile as an initiator. The solvent effect on the apparent monomer reactivity ratios was attributed to the different aggregation states of HEMA monomer in the different solvents. The copolymers obtained were water‐insoluble at a neutral pH but soluble in an acidic medium when the molar fraction of the DEA content was higher than 0.5. The quaternization of DEA residues increased the hydrophilic character of the copolymers, and they became water‐soluble at a neutral pH when the HEMA content was lower than 0.25. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2427–2434, 2002  相似文献   

6.
Preparation and study of a series of copolymers incorporating 2‐vinyl‐4,4‐dimethylazlactone (VDMA) is reported. The reactivity ratios for photo‐initiated free radical copolymerization of VDMA with methacrylic acid (MAA), acrylic acid (AA), acrylamide (AAm), dimethylacrylamide (DMAA), hydroxyethyl methacrylate (HEMA), methoxy poly(ethylene glycol) methacrylate (MPEG300MA), and 2‐methacryloyloxyethyl phosphorylcholine (MPC), were determined by fitting comonomer conversion data obtained by in situ 1H NMR to a terminal copolymerization equation. Semi‐batch photo‐copolymerizations were then used to synthesize the corresponding VDMA copolymers with constant composition. Their solubility and dissolution behavior, as well as their hydrolysis half‐lives under physiological conditions, were determined. P(VDMA‐co‐MAA) copolymers with 52 to 93 mol % VDMA showed decreasing initial solubility and increasing hydrolysis half‐lives with increasing VDMA content. VDMA copolymers with nonionic monomers AAm and DMAA were water soluble only at VDMA contents of 41 and 22 mol % or less, respectively, and showed longer hydrolysis half‐lives than comparable MAA copolymers. VDMA copolymers with HEMA and MPEG300MA were found to crosslink during storage, so their hydrolysis half‐lives were not determined. VDMA copolymers with 18% zwitterionic MPC showed a much longer half‐life and superior initial solubility compared to analogous p(VDMA‐co‐MAA), identifying this copolymer as a promising candidate for macromolecular crosslinkers in, for example, aqueous layer‐by‐layer co‐depositions with polyamines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
The model water‐soluble polymer poly(ethylene oxide) was used to investigate solvation characteristics in mixtures of d‐water (deuterated water) and d‐alcohols (deuterated alcohols). Three d‐alcohols have been used: d‐methanol, d‐ethanol, and d‐ethylene glycol. Small angle neutron scattering was used to monitor the solvation properties of poly(ethylene oxide) in the d‐solvent mixtures. Nonideal solvent mixing was observed throughout. Solvent mixtures were found to be more effective solvating agents than individual solvents. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3195–3199, 2006  相似文献   

8.
Hydrophilic interaction liquid chromatography has emerged as a valuable alternative approach to ion‐pair chromatography for the separation of aminoglycoside antibiotics in recent years. However, the resolution of structurally related aminoglycosides is a great challenge owing to the limited selectivity. In this work, a cysteine‐based zwitterionic stationary phase (named Click TE‐Cys) was utilized and compared with five commonly used hydrophilic interaction liquid chromatography columns. Click TE‐Cys displayed much better selectivity for structurally similar aminoglycosides. The retention behaviors of aminoglycosides were investigated in detail, revealing that low pH (2.7 or 3.0) and high buffer concentration (≥50 mM) were preferable for achieving good peak shape and selectivity. Effective resolution of ten aminoglycosides including spectinomycin, dihydrostreptomycin, streptomycin, gentamicin C1, gentamicin C2/C2a, gentamicin C1a, kanamycin, paromonycin, tobramycin, and neomycin was realized at optimized conditions. Additionally, spectinomycin and its related impurities were successfully resolved. The results indicated the great potential of the Click TE‐Cys column in the separation of aminoglycoside mixtures and related impurities.  相似文献   

9.
A novel carboxyl‐bonded silica stationary phase was prepared by “thiol‐ene” click chemistry. The resultant Thiol‐Click‐COOH phase was evaluated under hydrophilic interaction liquid chromatography (HILIC) mobile phase conditions. A comparison of the chromatographic performance of Thiol‐Click‐COOH and pure silica columns was performed according to the retention behaviors of analytes and the charged state of the stationary phases. The results indicated that the newly developed Thiol‐Click‐COOH column has a higher surface charge and stronger hydrophilicity than the pure silica column. Furthermore, the chromatographic behaviors of five nucleosides on the Thiol‐Click‐COOH phase were investigated in detail. Finally, a good separation of 13 nucleosides and bases, and four water‐soluble vitamins was achieved.  相似文献   

10.
Various densely grafted polymers containing poly(aniline‐2‐sulfonic acid‐co‐aniline)s as side chains and polystyrene as the backbone were prepared. A styryl‐substituted aniline macromonomer, 4‐(4‐vinylbenzoxyl)(Ntert‐butoxycarbonyl)phenylamine (4‐VBPA‐tBOC), was first prepared by the reaction of 4‐aminophenol with the amino‐protecting moiety di‐tert‐butoxyldicarbonate, and this was followed by substitution with 4‐vinylbenzyl chloride. 4‐VBPA‐tBOC thus obtained was homopolymerized with azobisisobutyronitrile as an initiator, and this was followed by deprotection with trifluoroacetic acid to generate poly[4‐(4‐vinylbenzoxyl)phenylamine] (PVBPA) with pendent amine moieties. Second, the copolymerization of aniline‐2‐sulfonic acid and aniline was carried out in the presence of PVBPA to generate densely grafted poly(aniline‐2‐sulfonic acid‐co‐aniline). Through the variation of the molar feed ratio of aniline‐2‐sulfonic acid to aniline, various densely grafted copolymers were generated with different aniline‐2‐sulfonic acid/aniline composition ratios along the side chains. The copolymers prepared with molar feed ratios greater than 1/2 were water‐soluble and had conductivities comparable to those of the linear copolymers. Furthermore, these copolymers could self‐dope in water through intermolecular or intramolecular interactions between the sulfonic acid moieties and imine nitrogens, and this generated large aggregates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1090–1099, 2005  相似文献   

11.
We performed a critical reinvestigation of microwave enhancement of nitroxide‐mediated polymerization (NMP) of acrylamide (AM) in aqueous media in the dynamic (DYN) mode with a combination of a conventional hydrosoluble radical initiator and a β‐phosphonylated nitroxide (SG1). Based on the results of our previous work, a complementary series of polymerization reactions was carried out between 130 and 160 °C using only the DYN mode to ascertain the existence of a microwave effect. The polymer conversion (p), molar masses, polydispersity index, and viscosity of each sample were measured. The temperature was monitored inside and outside of the vessel using an optical fiber sensor and an IR sensor, respectively. Microwave enhancement of polymerization, temperature control and viscosity of the reaction media were closely related. We also furthered the field of hydrophilic AB diblock copolymer synthesis using a tertiary SG1‐based macroalkoxyamine and directly synthesized both poly(acrylamide‐b‐sodium 2‐acrylamido‐2‐methylpropanesulfonate), a neutral‐b‐anionic diblock copolymer, and poly(acrylamide‐b‐3‐dimethyl(methacrylamidopropyl)ammonium propanesulfonate), a neutral‐b‐zwitterionic diblock copolymer, in homogeneous aqueous media. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
This study compares the separation performance of a group of iodinated X‐ray contrast media on four different columns. The first three were two stationary phases (SPs) modified with C18 and a polar‐embedded SP (polar amide group bonded to an alkyl chain), all of which worked under RP‐LC mode. The fourth was a zwitterionic sulphoalkylbetaine SP, working under the hydrophilic interaction LC (HILIC) mode. After the optimisation of the different parameters, the zwitterionic column displayed the best separation, which also overcomes the problems encountered when these analytes were separated under RP‐LC. Moreover, when HILIC is coupled to MS/MS, sensitivity is enhanced. However, when sewage samples were analysed by SPE followed by the optimal HILIC–MS/MS, the sensitivity of the method was affected due to the high matrix effect, which had to be solved by dilution of the extract. Finally, the method was preliminarily validated with sewage and the figures of merit were comparable to those of the SPE–RP‐LC–MS/MS.  相似文献   

13.
The interaction between positively charged porphyrin TMPyP(4) (tetrakis‐(1‐methyl‐4‐pyridiniyl) porphyrin) and negatively charged surface of colloidal CdS nanoparticles has been studied by absorption spectrum, fluorescence spectroscopy, and time‐correlated single‐photon‐counting methods. Addition of CdS colloid to a TMPyP(4) solution leads to TMPyP(4) adsorption onto the surface of CdS colloid with an apparent association constant of 4643 L/mol. This adsorption results in distinct changes in absorption spectrum of TMPyP (4) and the quenching of its′ fluorescence, but the biexponential fluorescence decay changes hardly. Nearly 90% of the fluorescence of 5 × 10?6 mol/L TMPyP(4) can be quenched with 1.5 × 10?4 mol/L CdS colloid. These spectral changes are attributed to the formation of a certain form complex TMPyP(4)‐CdS.  相似文献   

14.
Iodinated X‐ray contrast media are the most widely used pharmaceuticals for intravascular administration in X‐ray diagnostic procedures. The increasing concern of the fate of these compounds into the environment has led to the development of analytical methods to determine them. However, these methods present problems due to the polar character of these analytes. In this paper, hydrophilic interaction LC is presented as an alternative technique. The retention of iodinated X‐ray contrast media was studied in two bare silica phases with different particle designs (i.e. porous and Fused Core?) and a zwitterionic sulfoalkylbetaine phase. The effect of the most important parameters of the mobile phase was studied for each stationary phase. It was observed that optimal mobile phase conditions included buffers with a high buffering capacity. Additionally, the retention mechanisms involved were studied in order to provide some insight into the possible occurring interactions. The contributions of partition and adsorption and the effect of the temperature on the retention of analytes were evaluated on all of the stationary phases.  相似文献   

15.
New water‐soluble methacrylate polymers with pendant quaternary ammonium (QA) groups were synthesized and used as antibacterial materials. The polymers with pendant QA groups were obtained by the reaction of the alkyl halide groups of a previously synthesized functional methacrylate homopolymer with various tertiary alkyl amines containing 12‐, 14‐, or 16‐carbon alkyl chains. The structures of the functional polymer and the polymers with QA groups were confirmed with Fourier transform infrared and 1H and 13C NMR. The degree of conversion of alkyl halides to QA sites in each polymer was determined by 1H NMR to be over 90% in all cases. The number‐average molecular weight and polydispersity of the functional polymer were determined by size exclusion chromatography to be 32,500 g/mol and 2.25, respectively. All polymers were thermally stable up to 180 °C according to thermogravimetric analysis. The antibacterial activities of the polymers with pendant QA groups against Staphylococcus aureus and Escherichia coli were determined with broth‐dilution and spread‐plate methods. All the polymers showed excellent antibacterial activities in the range of 32–256 μg/mL. The antibacterial activity against S. aureus increased with an increase in the alkyl chain length for the ammonium groups, whereas the antibacterial activity against E. coli decreased with increasing alkyl chain length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5965–5973, 2006  相似文献   

16.
Synthesis and characterization of polyaniline‐grafted poly(styrene‐alt‐maleic anhydride) (PANI‐g‐PSMA) was carried out to obtain conductive comb copolymers with highly improved processability. First, polyaniline (PANI) was prepared in nano‐scale by chemical synthesis under ultrasonic irradiation. Then the poly(styrene‐alt‐maleic anhydride) (PSMA) was synthesized by free radical polymerization. Moreover, the PANI was grafted on the PSMA backbone to prepare a comb‐like conductive copolymer for improving its processability as a new method. The products were characterized by Fourier transform infrared, ultraviolet–visible spectroscopy and X‐ray diffraction patterns. Morphology of the samples was also investigated by scanning electron microscopy images. Finally, the solubility and conductivity of the products were studied, and it resulted in high solubility of the products in water and other common organic solvents in comparison to the pure PANI. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Analysis of water‐soluble vitamins has been tremendously approached through the last decades. A multitude of HPLC methods have been reported with a variety of advantages/shortcomings, yet, the design space of HPLC analysis of these vitamins was not defined in any of these reports. As per the food and drug administration (FDA), implementing the quality by design approach for the analysis of commercially available mixtures is hypothesized to enhance the pharmaceutical industry via facilitating the process of analytical method development and approval. This work illustrates a multifactorial optimization of three measured plus seven calculated influential HPLC parameters on the analysis of a mixture containing seven common water‐soluble vitamins (B1, B2, B6, B12, C, PABA, and PP). These three measured parameters are gradient time, temperature, and ternary eluent composition (B1/B2) and the seven calculated parameters are flow rate, column length, column internal diameter, dwell volume, extracolumn volume, %B (start), and %B (end). The design is based on 12 experiments in which, examining of the multifactorial effects of these 3 + 7 parameters on the critical resolution and selectivity, was carried out by systematical variation of all these parameters simultaneously. The 12 basic runs were based on two different gradient time each at two different temperatures, repeated at three different ternary eluent compositions (methanol or acetonitrile or a mixture of both). Multidimensional robust regions of high critical Rs were defined and graphically verified. The optimum method was selected based on the best resolution separation in the shortest run time for a synthetic mixture, followed by application on two pharmaceutical preparations available in the market. The predicted retention times of all peaks were found to be in good match with the virtual ones. In conclusion, the presented report offers an accurate determination of the design space for critical resolution in the analysis of water‐soluble vitamins by HPLC, which would help the regulatory authorities to judge the validity of presented analytical methods for approval.  相似文献   

18.
A novel, simple, and effective ion‐pair cloud‐point extraction coupled with a gradient high‐performance liquid chromatography method was developed for determination of thiamine (vitamin B1), niacinamide (vitamin B3), pyridoxine (vitamin B6), and riboflavin (vitamin B2) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion‐pair formation approach between these ionizable analytes and 1‐heptanesulfonic acid sodium salt as an ion‐pairing agent. Influential variables on the ion‐pair cloud‐point extraction efficiency, such as the ion‐pairing agent concentration, ionic strength, pH, volume of Triton X‐100, extraction temperature, and incubation time have been fully evaluated and optimized. Water‐soluble vitamins were successfully extracted by 1‐heptanesulfonic acid sodium salt (0.2% w/v) as ion‐pairing agent with Triton X‐100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r2 > 0.9916) and precision in the concentration ranges of 1‐50 μg/mL for thiamine and niacinamide, 5–100 μg/mL for pyridoxine, and 0.5–20 μg/mL for riboflavin. The recoveries were in the range of 78.0–88.0% with relative standard deviations ranging from 6.2 to 8.2%.  相似文献   

19.
Novel water‐soluble copolymers containing 4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) dyes were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The copolymers with both number‐average molecular weight between 5.0 × 103 and 5.8 × 103 and narrow molecular weight distribution (Mw/Mn < 1.19) were obtained by the copolymerization of (2‐dimethylamino)ethyl methacrylate (DMAEMA) and BODIPY‐based methyl methacrylate ( 1 ) with 2,2′‐azobis(isobutyronitrile) (AIBN) as an initiator in the presence of cumyl dithiobenzoate (CDB) as a chain transfer agent (CTA). The structures of the resulting copolymers were characterized by 1H, 13C, and 11B NMR spectroscopies, and the comonomer compositions were good consistent with the feed ratio. Characteristic optical properties of the obtained copolymers were investigated by UV‐vis and PL spectroscopic methods. The copolymers composed of [DMAEMA]: [1] = 98.0:2.0 and 99.4:1.4 led to thermoresponsive polymers having phase separation temperatures at 32 °C and 40 °C, respectively, depending on the compositions of hydrophilic/hydrophobic balances. Further, the effective reversible decrease/increase of the emission intensity of the copolymers led to the reversible formation/inhibition of the H‐aggregation between two BODIPY planes in the copolymers on heating and cooling across the border of LCST. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 627–634, 2010  相似文献   

20.
A new online concentration method, namely pressure‐assisted field‐enhanced sample injection (PA‐FESI), was developed and compared with FESI for the analysis of water‐soluble vitamins by CZE with UV detection. In PA‐FESI, negative voltage and positive pressure were simultaneously applied to initialize PA‐FESI. PA‐FESI uses the hydrodynamic flow generated by the positive pressure to counterbalance the reverse EOF in the capillary column during electrokinetic sample injection, which allowed a longer injection time than usual FESI mode without compromising the separation efficiency. Using the PA‐FESI method, the LODs of the vitamins were at ng/mL level based on the S/N of 3 and the RSDs of migration time and peak area for each vitamin (1 μg/mL) were less than 5.1%. The developed method was applied to the analysis of water‐soluble vitamins in corns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号