首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel monolithic silica column that has a polar‐embedded amide‐secondary amine group linking with C16 functionality for RP‐CEC is described. The amide‐secondary aminealkyloxysilane was synthesized by the reaction of 3‐(2‐aminoethylamino) propyltrimethoxysilane with hexadecanoyl chloride. Then, the silylant agent was bonded to the silica monolith matrix to produce hexadecanamide‐secondary amine bonded silica (HDAIS) monolithic column. The electrochromatographic performance of HDAIS monolithic column for the separation of neutral, basic and polar solutes was studied, which was compared to that using the hexadecyl bonded silica monolithic column. The HDAIS monolithic column displayed reduced hydrophobic retention characteristics in the separation of five hydrophobic n‐alkylbenzenes and four polar phenols when compared to the hexadecyl bonded silica monolithic column. A very much reduced silanol activity of HDAIS monolithic column was observed in the separation of test basic mixture including four aromatic amines, atenolol and metoprolol with 10 mM borate buffer (pH 7.5) containing 30% v/v ACN as the mobile phase. The comparison results indicate good performance for both polar and basic mixtures on HDAIS monolithic column in RP‐CEC, and also show promising results for further applications.  相似文献   

2.
A new titanium(IV) butoxide-cyanopropyltriethoxysilane (Ti-CNPrTEOS) hybrid material was successfully synthesized for the use as sorbent for the extraction of polar aromatic amines. The sorbent was synthesized by hydrolysis and condensation of titanium(IV) butoxide and cyanopropyltriethoxysilane with the presence of hydrochloric acid as catalyst via sol–gel method. Several factors influencing the synthesized sorbent such as solvent selection, mol of water content, ratio of titanium(IV) butoxide and cyanopropyltriethoxysilane and aging temperature were investigated and optimized. The sorbents were characterized by fourier transform-infrared, field-emission scanning electron microscopy-energy, CHN elemental analysis and thermogravimetric analysis. The applicability of the sorbents for the extraction of polar aromatic amines by the batch sorption method was extensively studied and evaluated. Under the optimum synthesis conditions (tetrahydrofuran as solvent, 1.2 M of hydrochloric acid catalyst, 4 mol of water content with ratio of titanium(IV) butoxide and cyanopropylteriethoxysilane of 1:1 and aging temperature of 60 °C), the extraction showed high recovery towards the extraction of polar aromatic amines. The synthesized sorbent was successfully applied for the extraction of selected aromatic amines via batch sorption method in waste water samples prior to the gas chromatography-flame ionization detector separation. The synthesized sol–gel Ti-CNPrTEOS sorbent demonstrated the potential as an alternative extraction sorbent with higher selectivity towards polar aromatic amines.  相似文献   

3.
A novel bis(indolyl)methane‐modified silica reinforced with multiwalled carbon nanotubes sorbent for solid‐phase extraction was designed and synthesized by chemical immobilization of nitro‐substituted 3,3′‐bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high‐performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single‐step solid‐phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R2) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5–5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro‐substituted 3,3′‐bis(indolyl)methane‐modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro‐substituted 3,3′‐bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface‐to‐volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π–π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as‐established solid‐phase extraction with high‐performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes.  相似文献   

4.
Microextraction by packed sorbent (MEPS) has been evaluated for fast screening of drugs of abuse with mass spectrometric detection. In this study, C8 (octyl-silica, useful for nonpolar to moderately polar compounds), ENV+ (hydroxylated polystyrene-divinylbenzene copolymer, for extraction of aliphatic and aromatic polar compounds), Oasis MCX (sulfonic-poly(divinylbenzene-co-N-polyvinyl-pyrrolidone) copolymer), and Clean Screen DAU (mixed mode, ion exchanger for acidic and basic compounds) were used as sorbents for the MEPS. The focus was on fast extraction and preconcentration of the drugs with rapid analysis using a time-of-flight (TOF) mass spectrometer as the detector with direct analysis in a real-time (DART) source. The combination of an analysis time of less than 1 min and accurate mass of the first monoisotopic peak of the analyte and the relative abundances of the peaks in the isotopic clusters provided reliable information for identification. Furthermore, the study sought to demonstrate that it is possible to quantify the analyte of interest using a DART source when an internal standard is used. Of all the sorbents used in the study, Clean Screen DAU performed best for extraction of the analytes from urine. Using Clean Screen DAU to extract spiked samples containing the drugs, linearity was demonstrated for ecgonine methyl ester, benzoylecgonine, cocaine, and cocaethylene with average ranges of: 65–910, 75–1100, 95–1200, and 75–1100 ng/mL (n = 5), respectively. The limits of detection (LOD) for ecgonine methyl ester, benzoylecgonine, cocaine, and cocaethylene were 22. 9 ng/mL, 23. 7 ng/mL, 4. 0 ng/mL, and 9.8 ng/mL respectively, using a signal-to-noise ratio of 3:1.  相似文献   

5.
A series of novel poly(amine amide)s ( IIa – IIl ) with pendent N‐carbazolylphenyl units having inherent viscosities of 0.25–1.06 dL/g were prepared via direct phosphorylation polycondensation from various dicarboxylic acids and a carbazole‐based aromatic diamine. Except for poly(amine amide) IIc , derived from trans‐1,4‐cyclohexanedicarboxylic acid, all the other amorphous poly(amine amide)s were readily soluble in many polar solvents, such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone (NMP), and could be cast into transparent and flexible films. The aromatic poly (amine amide)s had useful levels of thermal stability associated with relatively high glass‐transition temperatures (268–331 °C), 10% weight loss temperatures in excess of 540 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers exhibited maximum ultraviolet–visible absorption at 293–361 nm in NMP solutions. Their photoluminescence in NMP solutions exhibited fluorescence emission maxima around 362 and 448–499 nm for aromatic–aliphatic poly(amine amide)s IIa – IIc and aromatic poly (amine amide)s IId – IIl , respectively. The fluorescence quantum yield in NMP solutions ranged from 0.34% for IIj to 4.44% for IIa . The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine amide) films cast onto an indium tin oxide coated glass substrate exhibited reversible oxidation at 0.81 V and irreversible oxidation redox couples at 1.20 V versus Ag/AgCl in acetonitrile solutions, and they revealed excellent stability of the electrochromic characteristics, with a color change from yellow to green at applied potentials ranging from 0.00 to 1.05 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4108–4121, 2006  相似文献   

6.
This paper reports the application of a multiphase dispersive extraction method to the extraction, separation, and determination of the phenolic acids from Salicornia herbacea L. using silica‐confined ionic liquids as sorbents. A suitable sorbent for phenolic acid extraction and separation was first identified based on the adsorption behavior of the phenolic acids on different silica‐confined ionic liquids. The sample was then mixed with the optimized sorbent and solvent to achieve multiphase dispersive extraction. The sample/sorbent ratio was optimized using theoretical calculations from the adsorption isotherm and experiments. After transferring the supernatant to an empty cartridge, an SPE process was used to separate the three phenolic acids from the other interference. Through systematic optimization, the optimal conditions produced high recovery rates of protocatechuic acid (91.20%), caffeic acid (94.03%), and ferulic acid (91.33%). Overall, the proposed method is expected to have wide applicability.  相似文献   

7.
An SPE cartridge based on an ampholine‐functionalized hybrid organic–inorganic silica sorbent has been adopted for the analysis of aromatic amines including 4‐aminobiphenyl, benzidine, 2‐naphthylamine, p‐chloroaniline, 2,4,5‐trimethylaniline, and 3,3′‐dichlorobenzidine. Crucial variables governing the extraction efficiency of the material such as the pH of sample, sample loading volume, solvent used for elution, and elution volume have been thoroughly optimized. The adsorption capacities for the six aromatic amines ranged from 0.17 to 1.82 μg/mg. The recoveries of aromatic amines spiked in textile samples ranged from 78.9 to 103.0%, with RSDs of 1.1–11.9% (n = 3). Moreover, the extraction efficiency of the ampholine‐functionalized hybrid organic–inorganic silica sorbent was at least comparable with that of Oasis WCX.  相似文献   

8.
Passive sampling techniques have been developed as an alternative method for in situ integrative monitoring of trace levels of neutral pesticides in environmental waters. The objective of this work was to develop a new receiving phase for pesticides with a wide range of polarities in a single step. We describe the development of three new composite silicone rubbers, combining polydimethylsiloxane mechanical and sorption properties with solid‐phase extraction sorbents, prepared as a receiving phase for passive sampling. A composite silicone rubber composed of polydimethylsiloxane/poly(divinylbenzene‐co‐N‐vinylpyrrolidone) was selected by batch experiments for its high sorption properties for pesticides with octanol‐water partition coefficients ranging from 2.3 to 5.5. We named this composite material “Polar/Apolar Composite Silicone Rubber”. A structural study by scanning electron microscopy confirmed the homogeneous dispersion of the sorbent particles and the encapsulation of particles within the polydimethylsiloxane matrix. We also demonstrate that this composite material is resistant to common solvents used for the back‐extraction of analytes and has a maximal resistance temperature of 350°C. Therefore, the characteristics of the “Polar/Apolar Composite Silicone Rubber” meet most of the criteria for use as a receiving phase for the passive sampling of pesticides.  相似文献   

9.
Summary A weakly polar porous copolymer and the sulfonic acid cation exchanger based on this copolymer were tested as sorbents for off-line preconcentration of aromatic amines from water. Minicolumns packed with the 1,4-di(methacryloyloxymethyl)naphthalene—divinylbenzene copolymer and the cation exchanger were used for the solid-phase extraction of polar amines. In order to study the sorption properties of these polymeric materials, the recoveries and breakthrough volumes ofp-aminophenol,o, m andp-phenylenediamine, aniline,o andp-anisidine,p-nitroaniline, ando-toluidine were determined.  相似文献   

10.
We prepared new phases for LC that consisted of silica modified with non‐covalently bonded tetrakis(β‐cyclodextrin)–porphyrin (where cyclodextrin is CD) conjugates. The effects of the porphyrin core, type of spacer and β‐CD moieties on the behaviours of the modified phases for the separation of aromatic compounds (benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, pentylbenzene, o‐terphenyl, triphenylene, phenol and caffeine) and fluorinated aromatic compounds (pentafluorobenzonitrile, pentafluoronitrobenzene and hexafluorobenzene) were studied using the Tanaka test. The results indicate that the non‐covalent substitution of silica with CD‐based macromolecules that have a porphyrin core can be a very effective method for preparing novel sorbents with specific chromatographic properties for applications in LC.  相似文献   

11.
In this work, the perfluorobenzene-bonded silica sorbent was tested to adsorb polycyclic aromatic hydrocarbons in hexane. In the comparison experiments, the perfluorobenzene-bonded sorbent's performance was better than octadecyl silica sorbent and phenyl-bonded silica sorbents, which indicated that the π-hole···π bonds between perfluorobenzene and the polycyclic aromatic hydrocarbons were stronger than π···π interactions and hydrophobic interactions in hexane. Then the perfluorobenzene-bonded silica sorbent was applied to solid-phase extraction of 15 polycyclic aromatic hydrocarbons from the hexane extracts of soil samples directly without the solvent replacement, which simplified the soil pretreatment process. And the results showed that under the optimal conditions, the proposed method for the determination of polycyclic aromatic hydrocarbons in the environment soil presented good recoveries and stabilities for the 10 heavier polycyclic aromatic hydrocarbons with the recoveries ranging from 75.1% to 104.6% and the relative standard deviations being in the range of 1.4%–5.8%. The limits of detection of the method varied from 0.1 to 2 ng/g. This work reveals the great application potential of the π-hole bond as a new retention mechanism in the field of solid-phase extraction.  相似文献   

12.
Amphiphilic fluorescent graft copolymer (PVP‐PyATAm) was successfully synthesized by the free radical copolymerizations of hydrophobic monomer N‐acryloyl‐thioureylene‐4‐(1‐pyrene)‐butyryl amide (PyATAm) with hydrophilic precursor polymers of vinyl‐functionalized poly (N‐vinylpyrrolidone) (Acryloyl‐PVP) in DMF. FT‐IR, 1H NMR, TEM, gel permeation chromatography‐multi‐angle laser light scattering, UV‐vis spectroscopy, viscometric measurement, and fluorescence spectroscopy were used to characterize this copolymer. The TEM observation showed that the copolymer PVP‐ PyATAm formed spherical micelles in an aqueous solution and the size of micelles was between 50 and 70 nm in diameter. The interaction of PVP‐PyATAm copolymer and plasmid DNA was examined by agarose gel electrophoresis and TEM. Results indicated that the copolymer–DNA complexes were self‐assembled and the size of complexes was between 90 and 120 nm in diameter. Cytotoxity studies using MTT colorimetric assays suggested good biocompatibility of PVP‐PyATAm in vitro. These results suggested the potential of this graft copolymer as gene delivery carrier. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Silicas chemically modified with N-allyl-N"-propylthiourea and N-phenyl-N"-propylthiourea were proposed for the low-temperature sorption–luminescence determination of platinum. The sorption of platinum(II) and platinum(IV) at the surface of sorbents yields coordination compounds luminescing at 77 K under UV irradiation. Luminescence spectra of platinum(II) complexes of thiourea derivatives covalently bonded to the silica surface exhibit a broad structureless band with a maximum at 585 nm. For the sorbent with N-allyl-N"-propylthiourea groups, the detection limit of platinum is 0.1 g per 0.1 g of the sorbent. The calibration plot is linear up to 50 g/0.1 g. The detection limit and the linearity range of calibration plots depend on the mass of the sorbent. The proposed procedure was used for the analysis of aluminoplatinum catalysts.  相似文献   

14.
Novel types of spin‐labeled N,N′‐dicyclohexylcarbodiimides (DCC) are reported that bear a 2,2,6,6‐tetramethylpiperidinyloxyl (TEMPO) residue on one side and different aromatic and aliphatic cyclohexyl analogues on the other side of the diimide core. These readily available novel reagents add efficiently to aliphatic and aromatic carboxylic acids, forming two possible spin‐labeled amide derivatives with different radical distances of the resulting amide. The addition of aromatic DCC analogues proceeds with excellent selectivity, giving amides where the carboxylic acid is exclusively connected to the aromatic residue, while little or no selectivity was observed for the aliphatic congeners. The usefulness of these adducts in structural studies was demonstrated by EPR (electron paramagnetic resonance) measurements of biradical adducts of biphenyl‐4,4′‐dicarboxylic acids. These analyses also reveal high degrees of conformational bias for aromatic DCC derivatives, which further underlines the powerfulness of these novel reagents. This observation was further corroborated by quantum chemical calculations, giving a detailed understanding of the structural dynamics, while detailed information on the solid state structure of all novel reagents was obtained by X‐ray structure analyses.  相似文献   

15.
A simple and efficient procedure for the preparation of silica‐bonded propyl‐diethylene‐triamine‐N‐sulfamic acid (SPDTSA) by reaction of 3‐diethylenetriamine‐propylsilica (DTPS) and chlorosulfonic acid in chloroform is described. Silica‐bonded propyl‐diethylene‐triamine‐N‐sulfamic acid is employed as a recyclable catalyst for the synthesis of 1,1‐diacetates from aromatic aldehydes and acetic anhydride under mild and solvent‐free conditions at room temperature. Catalyst could be recycled for several times without any additional treatment.  相似文献   

16.
A procedure using alkaline extraction, solid-phase extraction (SPE) and HPLC is developed to analyze the polar herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) together with their main metabolites in soils. An ion-pairing HPLC method is used for the determination as it permits the baseline separation of these highly polar herbicides and their main metabolites. The use of a highly cross-linked polystyrene-divinylbenzene sorbent (PS-DVB) gives the best results for the analysis of these compounds. This sorbent allows the direct preconcentration of the analytes at the high pH values obtained after quantitative alkaline extraction of the herbicides from soil samples. Different parameters are evaluated for the SPE preconcentration step. The high polarity of the main analytes of interest (2,4-D and MCPA) makes it necessary to work at low flow rates (< or =0.5 mL min(-1)) in order for these compounds to be retained by the PS-DVB sorbent. A two stage desorption from the SPE sorbent is required to obtain the analytes in solvents that are appropriate for HPLC determination. A first desorption with a 50:50 methanol:water mixture elutes the most polar analytes (2,4-D, MCPA and 2CP). The second elution step with methanol permits the analysis of the other phenol derivatives. The humic and fulvic substances present in the soil are not efficiently retained by PS-DVB sorbents at alkaline pH's and so do not interfere in the analysis. This method has been successfully applied in the analysis of soil samples from a golf course treated with a commercial product containing esters of 2,4-D and MCPA as the active components.  相似文献   

17.
18.
Polar vinyl monomers have been used for the synthesis of several polymer monoliths, to serve as novel coatings for stir bar sorptive extraction; the monovinyl monomers 2‐hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) monomethacrylate) (PEGMA) were copolymerized with (apolar) divinylbenzene (DVB) and/or pentaerythritol triacrylate (PETRA), both of which are cross‐linking agents. After the optimization of the most important synthesis parameters, which included the ratio between total monomers and porogen, the nature of the porogen, and the monomer ratios, inter alia, three mechanically stable, polar monolithic coatings for stir bar sorptive extraction were obtained that were based on poly(HEMA‐co‐DVB), poly(HEMA‐co‐PETRA), and poly(PEGMA‐co‐PETRA). Thereafter, and in order to evaluate the hydrophilicity of the resulting monoliths, they were applied as materials in the stir bar sorptive extraction of a group of emerging pollutants with a wide range of polarities. The results showed that both the poly(HEMA‐co‐DVB) and poly(PEGMA‐co‐PETRA) materials could be used to extract both polar and nonpolar compounds by stir bar sorptive extraction, in an effective manner. Taking into account the desired chemical and morphological properties, as well as the extraction efficiencies, the poly(PEGMA‐co‐PETRA) material seemed to be a particularly promising monolith for application as a novel coating in stir bar sorptive extraction.  相似文献   

19.
The preparation of three novel alternating copoly(aromatic ester–aliphatic amide)s containing the same ordered amide–amide–ester–ester (AAEE), the same para-disubstituted phenyl, and the different long methylene chain structure were described. 1,1′-(Adipoyl)bisbenzotriazole (AdBBT), 1,1′-(suberoyl)bisbenzotriazole (SuBBT), and 1,1′-(sebacoyl)bisbenzotriazole (SeBBT) were synthesized. These diacylbenzotriazoles were preferred to aminoethanol at the amino group because of the selective N-acylation of active acylamide of benzotriazole in excellent yield at room temperature to give diol monomers such as N,N′-bis(2-hydroxyethyl)adipic amide (HEAdA), N,N′-Bis(2-hydroxyethyl)subaric amide (HESuA), and N,N′-bis(2-hydroxyethyl)sebacic amide (HESeA). Polycondensation of 1,1′-(teraphthaloyl)bisbenzotrizole (tPBT) with HEAdA, HESuA, and HESeA gave the corresponding alternating copoly(aromatic ester–aliphatic amide)s: P(tPE–AdA), P(tPE–SuA), and P(tPE–SeA), respectively. The alternating copoly(aromatic ester–aliphatic amide)s were characterized by 1H-NMR spectra. The resulting polymers have two different chain units; one is chain unit of poly(ethylene terephthalate) and the other is a chain unit of polyamide-2,6, polyamide-2,8, and polyamide-2,10; both are linked via a C? N bond.  相似文献   

20.
The chromatographic properties of four phenyl‐bonded phases with different structures were studied. The columns used were packed with a stationary phase containing a phenyl ring attached to the silica surface using different types of linkage molecules. As a basic characteristic of the bonded phases, the hydrophobicity and silanol activity (polarity) were investigated. The presence of the polar amino and amide groups in the structure of the bonded ligand strongly influences the polarity of the bonded phase. Columns were compared according to methylene selectivity using a series of benzene homologues and according to their shape and size selectivity using polycyclic aromatic hydrocarbons. The measurements were done using methanol/water and acetonitrile/water mobile phases. The presented results show that the presence of polar functional groups in the ligand structure strongly influences the chromatographic properties of the bonded phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号