首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic structure of the ferrimagnetic fluoride - Na5Fe3F14 has been determined. The magnetic moments of the iron atoms in (2a) and (4d) sites are antiparallel and directed along the c axis. The magnetic group is P422′12′.  相似文献   

2.
The magnetic phase transitions and magnetic structures in RFe3(BO3)4 (R = Y, Gd-Er) iron borates have been investigated by the method of erbium spectroscopic probe. The magnetic ordering temperatures have been determined. On the basis of the comparison of the character of splitting of the spectral lines of the probe Er3+ ion in RFe3(BO3)4(R = Y, Dy-Er) iron borates and in GdFe3(BO3)4, a complicated whose magnetic structure is known, a conclusion is drawn about the orientation of the magnetic moments of iron: in dysprosium and terbium iron borates, an easy-axis magnetic structure is implemented, whereas an easy-plane structure occurs in holmium, erbium, and yttrium iron borates.  相似文献   

3.
Powders of (rmFeS)1?x(FeSe)x have been studied by Ms?sbauer, magnetic, and X-ray techniques. For our heat treatment of the samples the structure of the solid solutions is NiAs-like for 0≤x≤0.6, beyond which the structure is PbO-like. The samples contain also increasing amounts (with increasing x) of spurious “background” material which consists of metallic iron together with commensurate amounts of Fe7S8 and/or Fe7Se8. The tetragonal (PbO-like) FeSe shows no magnetic hyperfine structure and is thought to exhibit Pauli paramagnetism.  相似文献   

4.
The magnetic structure of the surface layer of single crystals of hexagonal ferrites of the type Sr-M (SrFe12O19) in which some iron ions are replaced by diamagnetic Al ions is investigated, in direct comparison with the magnetic structure in the bulk of the sample, by the method of simultaneous gamma, x-ray, and electron Mössbauer spectroscopy. It is found that under conditions of diamagnetic dilution of the magnetic lattice of hexagonal ferrites of the type Sr-M by Al ions, a layer ~200 nm thick in which the orientation of the magnetic moments is not collinear with the direction of the moments in the bulk of the sample is observed on the surface of SrFe10.2Al1.8O19 crystals. Thus a “transitional” surface layer has been observed on macroscopic ferromagnetic crystals.  相似文献   

5.
The results of the Mössbauer effect studies of layered NaFeAs arsenide in a wide temperature range are presented. The measurements at T > T N demonstrate that the main part (~90%) of iron atoms are in the low-spin state Fe2+. The other atoms can be attributed to the impurity NaFe2As2 phase or to the extended defects in NaFeAs. The structural phase transition (at T S ≈ 55 K) does not produce any effect on hyperfine parameters (δ, Δ) of iron atoms. At T < T N, the spectra exhibit the existence of a certain distribution of the hyperfine magnetic field (H Fe) at 57Fe nuclei, indicating the inhomogeneity of the magnetic environment around iron cations. The analysis of the temperature behavior of the distribution function p(H Fe) allows us to determine the temperature of the magnetic phase transition (T N = 46 ± 2 K). It has been found that the magnetic ordering in the iron sublattice has a two-dimensional type. The analysis of the H Fe(T) dependence in the framework of the Bean-Rodbell model reveals a first-order magnetic phase transition accompanied by a drastic change in the electron contributions to the main component (V ZZ ) and the asymmetry parameter (η) of the tensor describing the electric field gradient at 57Fe nuclei.  相似文献   

6.
The minimum applied field HSW required to reverse the magnetic moment of the ferromagnetic/antiferromagnetic storage layer of a thermally assisted magnetic random access memory (TA-MRAM) device during the application of a heating electric pulse is investigated as a function of pulse power PHP and duration δ. For the same power of the heating pulse PHP (or, equivalently, for the same temperature of the storage layer), HSW increases with decreasing heating time δ. This behavior is consistently interpreted by a thermally activated propagating domain-wall switching model, corroborated by a real-time study of switching. The increase of HSW with decreasing pulse width introduces a constraint for the minimum power consumption of a TA-MRAM where writing combines heating and magnetic field application.  相似文献   

7.
IR magnetoreflection spectra, diagonal σ xx and off-diagonal σ xy components of the effective optical conductivity tensor, and magnetic properties of Fe(t x , Å)/Cr(10 Å) superlattices have been studied. The abrupt decrease in the amplitude of dissipative function ?ωImσ xy (ω) (ω is the cyclic frequency of light wave) in the superlattices with ultrathin Fe layers (t Fe = 3.2, 2.6, 2.1 Å) has been analyzed. It has been found that the magnetorefractive effect in nanostructures with ultrathin iron layers is due to scattering of conduction electrons by magnetic interfacial layers formed in the Cr matrix with complete consumption of deposited iron atoms. The parameters of the interfacial scattering of electrons in the spin-up (└) and spin-down (┌) conduction channels have been discussed.  相似文献   

8.
The crystal and magnetic properties of the Dy(FexAl1-x)2 (0≤x≤1.0) system are investigated with the X-ray, magnetometric and Mössbauer effect methods. The system constitutes two cubic C15 structure regions separated by hexagonal C14 structure region. The X-ray investigations indicate the structure disorder of the C15 type phases. All compounds of the investigated system are ferrimagnets. Some of them exhibit a pronounced magnetic anisotropy. Substitution of Al for Fe decreases the Curie temperature and the Fe hyperfine magnetic field. The distribution of hyperfine magnetic field at iron sites is correlated with their nearest neighbours configurations. The Mössbauer effect data indicate the existence of the appreciable amount of the covalent apart from the long-range metallic bond in the investigated phases.  相似文献   

9.
The temperature dependences of the X-ray absorption spectra (XAS) and of the spectra of X-ray magnetic circular dichroism (XMCD) are measured near the L 3,2 absorption edges of Co and Fe in ludwigite Co2FeBO5 single crystals. The antiparallel orientation of the magnetic moments of cobalt and iron is demonstrated. The coercive fields related to cobalt and iron ions are determined. The orbital (m l ) and (m s ) spin contributions to the total magnetic moments of cobalt and iron ions are identified. The ratios and relative directions of m l and m s are found.  相似文献   

10.
A direct comparison of the magnetic structures of a surface layer and of the bulk of Ba-M-type hexagonal ferrites with iron ions partially replaced by Sc diamagnetic ions (BaFe12?x ScxO19) has been made by simultaneous Mössbauer spectroscopy with detection of gamma rays, characteristic x-ray emission, and electrons. It has been found that, if the magnetic lattice of a Ba-M-type hexagonal ferrite is weakly diluted by Sc diamagnetic ions, a ~300-nm thick macroscopic layer forms on the surface of a BaFe11.4Sc0.6O19 crystal, in which the iron-ion magnetic moments are noncollinear with the moments in the bulk. The noncollinear magnetic structure forms in the near-surface layer of BaFe12?x ScxO19 crystals because the exchange interaction energy is additionally reduced by the presence of such a “defect” as the surface. This is the first observation in ferromagnetic crystals of an anisotropic surface layer whose magnetic properties, as predicted by Néel, differ from those of the bulk.  相似文献   

11.
《Current Applied Physics》2018,18(11):1289-1293
The influence of crystallization treatment on the structure, magnetic properties and magnetocaloric effect of Gd71Ni29 melt-spun ribbons has been investigated in detail. Annealing of the melt-spun samples at 610 K for 30 min, a majority phase with a Fe3C-type orthorhombic structure (space group, Pnma) and a minority phase with a CrB-type orthorhombic structure (space group, Cmcm) were obtained in the amorphous matrix. The amorphous melt-spun ribbons undergo a second-order ferromagnetic to paramagnetic phase transition at 122 K. For the annealed samples, two magnetic phase transitions caused by amorphous matrix and Gd3Ni phases occur at 82 and 100 K, respectively. The maximum magnetic entropy change (–ΔSM)max is 9.0 J/(kgˑK) (5T) at 122 K for the melt-spun ribbons. The values of (–ΔSM)max in annealed ribbons are 1.0 and 5.7 J/(kgˑK), corresponding to the two adjacent magnetic transitions.  相似文献   

12.
V MATHIVANAN  M HARIS 《Pramana》2013,81(1):177-187
Single crystal growth of pure and copper-doped iron tartrate crystals bearing composition Cu x Fe(1???x)C4H4O6·nH2O, where x = 0, 0.07, 0.06, 0.05, 0.04, 0.03, is achieved using gel technique. The elemental analysis has been done using energy-dispersive X-ray analysis (EDAX) spectrum. The characterization studies such as Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), magnetic analysis and thermal analysis have been done for crystals with x = 0 for pure iron tartrate and with x = 0.05 for copper-mixed iron tartrate crystals. A detailed comparison has been made between pure and doped crystals.  相似文献   

13.
The structural and magnetic properties of (Fe/Si) N nanostructures obtained by successive deposition on the SiO2/Si(100) surface at a temperature of the substrate of 300 K have been studied. The thicknesses of all Fe and Si layers have been determined by transmission electron microscopy measurements. The magnetic properties have been studied by the X-ray magnetic circular dichroism (XMCD) method near the Fe L 3, 2 absorption edges. The orbital (m l ) and spin (m S ) contributions to the total magnetic moment of iron have been separated. The thicknesses of magnetic and nonmagnetic iron silicide on the Si/Fe and Fe/Si interfaces have been determined with the surface sensitivity of the XMCD method and the model of the interface between the nonmagnetic and weakened magnetic phases.  相似文献   

14.
A technique of simultaneous gamma-ray, x-ray, and electron Mössbauer spectroscopy is used to study the magnetic structure of the surface layer with direct comparison to the magnetic structure inside single crystal samples of hexagonal Ba-M ferrites, in which part of the iron ions have been replaced by diamagnetic Sc ions (chemical formula BaFe12?δ ScδO9). It is found that when the diamagnetic Sc ions are introduced into the crystal lattice of BaFe12?δ ScδO19 at concentrations (x=0.4 and 0.6) far below the level at which the collinear magnetic structure inside the sample is destroyed, a macroscopic layer of thickness ~300 nm develops on the surface, in which the magnetic moments of the iron ions are oriented noncollinearly with respect to the moments inside the sample. The deviation 〈θ〉 of the magnetic moments in BaFe11.6Sc0.4O19 was 10° ± 62° for x=0.4, and when the Sc concentration was raised to 0.6, the angle 〈θ〉 increased to 17° ± 62°. The noncollinear magnetic structure in the surface layer in these crystals develops because of further reduction in the energy of the exchange interactions owing to the presence of a “defect,” such as the surface. For the first time, therefore, an anisotropic surface layer whose magnetic properties differ from those in the interior of a sample has been observed experimentally in ferromagnetic crystals, as predicted by Néel [L. Néel, Phys. Radium. 15, 225 (1954)].  相似文献   

15.
The Fe/Cu nanocomposites with iron as core and copper as shell have been successfully synthesized by a two-step reduction method. A spherical nanoparticle of γ-Fe was first fabricated by the reduction of ferrous chloride, and then the Fe particle was coated by nanocrystalline Cu through the reduction of copper sulfate. The thickness of copper shell has been tuned by varying the initial concentration of copper sulfate. The morphology, crystalline structure, chemical composition and magnetic properties of the products were investigated by using transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and vibrating sample magnetometer (VSM). It was found that the saturation magnetization (Ms) values of the Fe/Cu core–shell particles are varied owing to the different thickness of copper layer. Though the Ms value of the Fe/Cu nanocomposite is lower than that of pure iron nanoparticles, the higher Ms value (22.411 emu/g) of the Fe/Cu composites is also investigated. The result of the thermogravimetric analysis (TGA) showed the enhanced antioxidation capacity of the Fe/Cu nanocomposites. This kind of nanocomposites combined the excellent magnetism of iron and the electronic, thermal conductivity of copper, suggesting potential application as a novel electromagnetic material.  相似文献   

16.
For the Nd0.1La0.9Fe11.5Al1.5 compound, the fine structure of the magnetic transition from the ferromagnetic (FM) to the antiferromagnetic (AFM) states has been studied carefully by means of magnetization (M) and heat capacity (Cp) measurements. Although a single phase with the cubic NaZn13-type structure (Fm3c) has been proved by the room temperature X-ray diffraction pattern, the phase transition has been clearly found to be a stepwise process in M(T) and Cp(T) curves under proper fields. Due to the strong competition between the FM order and AFM order, the characteristic is especially evident under low fields, weakens gradually with the increasing applied field and finally vanishes when the field is higher than 2 T. This multi-step magnetic transition results from the inhomogeneity of the sample, probably due to the inhomogeneous distribution of Nd atoms.  相似文献   

17.
Magnetic bioceramics based on hydroxyapatite Ca5(PO4)3OH and particles of the M-type hexagonal (barium or calcium) ferrite with a high bioactivity and magnetic characteristics providing hyperthermal treatment of oncology diseases has been developed and studied. The phase composition, microstructure, and magnetic properties of the synthesized bioceramics have been determined. It has been shown that the synthesized biomaterial consists of the biocompatible matrix with the apatite structure into which particles of hexagonal ferrite are incorporated. The magnetic parameters of the synthesized ceramics are substantially higher than those of the bioglass ceramics modified by iron oxides that have been used in medicine, which suggests good potential and effectiveness of application of the created ceramics for medical purposes. Thus, a new class of magnetic bioceramics combining hydroxyapatite Ca5(PO4)3OH, which exhibits good properties in biocompatibility and bioactivity, with particles of the M-type hexagonal ferrite, which possess high magnetic characteristics, has been created.  相似文献   

18.
Iron(III) oxyhydroxide xerogels were prepared through sol-gel technology, using iron(III) nitrate nonahydrate as precursor, ethanol as solvent and ammonium hydroxide as gelation agent. This base is used for propylene oxide substitution, which was the gelation agent in previous works. Synthesis of a gel using NH4OH as a gelation agent is an innovative result with this type of precursor, since with metal salts the addition of a strong base commonly results in precipitation of the solid. The gel synthesis was achieved by controlling the base addition time. The dried material has a residual amount of organic impurities, in contrast with the significant amount detected in xerogels prepared using propylene oxide. The iron phase prevailing in the produced xerogels can be defined as γ-FeO(OH) (lepidocrocite), according to FTIR and Mössbauer analyses. The xerogels are formed by large clusters of well connected nanocrystallites of this phase. XRD revealed a crystalline phase retained inside the iron oxyhydroxide amorphous structure, which corresponds to NH4NO3 and results from the combination of NO3 and NH4+ ions in solution. The produced xerogel has a promising composition to be an oxidizing composite for the energetic materials area.  相似文献   

19.
69m,71mZn have been implanted with an isotope separator on-line into a cold iron host matrix. Nuclear magnetic resonance of the low-temperature oriented isotopes has been observed. The resonance frequencies for zero external magnetic field are vL(69mZnFe@#@) =36.814(35) MHz andv L (71mZnFe)=33.47(19) MHz. From these the magnetic moments of the 9/2+ iosmeric states have been derived as μ(69mZn)=(?)1.138(18) n.m. andμ(71mZn)=(?)1.035(18) n.m. The experimentally known magnetic moments of (vg 9/2)-levels in odd zinc isotopes are compared to theoretical estimates.  相似文献   

20.
The antiferro- to paramagnetic phase transition of the weakly anisotropic compound MnF2 has been studied by means of heat capacity, magnetic susceptibility and thermal expansion measurements. The critical-point parameters associated with the specific heat indicate a transition according to the theoretical Ising-model. The temperature derivative of the parallel magnetic susceptibility times temperature (d(χ∥T)/dT) and the c-axis thermal expansion coefficient show a critical behaviour very similar to that of the specific heat. The influence of iron doping on the critical behaviour has been investigated by studies on Mn0.98Fe0.02F2. Specific heat and magnetic susceptibility measurements show an unexpectedly sharp transition although some rounding off is noticed as compared to pure MnF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号