首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excellent results of dispersion‐corrected density functional theory (DFT‐D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT‐D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss‐NMR calibration compounds are investigated by single‐crystal X‐ray diffraction, molecular dynamics and DFT‐D calculations. The crystal structure of 3‐methylglutaric acid is reported. The rotator phases of adamantane and hexamethylbenzene at room temperature are successfully reproduced in the molecular dynamics simulations. The calculated 13C chemical shifts of these compounds are in excellent agreement with experiment, with a root‐mean‐square deviation of 2.0 ppm. It is confirmed that a combination of classical molecular dynamics and DFT‐D chemical shift calculation improves the accuracy of calculated chemical shifts.  相似文献   

2.
Optimised synthesis procedures and results of X‐ray single crystal structure analyses for 4‐(dibromoboryl)toluene, 1, 3‐bis(dibromoboryl)benzene, 1, 4‐bis(dibromoboryl)benzene, and 1, 3, 5‐tris(dibromoboryl)benzene are reported. These compounds have also been studied by Hartree‐Fock (HF), density functional theory (DFT), and Mßller‐Plesset second‐order perturbation (MP2) methods in combination with the polarized double‐ζ valence (SVP) and polarized triple‐ζ valence (TZVP) basis sets of Ahlrichs and coworkers. A comparison of the quantum chemical results for optimised geometries and computed NMR chemical shifts with experiment is presented to test the quality of the various methods for this class of compounds. All DFT methods tested yield optimised geometries within the experimental error bars of 3σ for bond lengths, whereas larger deviations among the methods are observed for computed NMR chemical shifts. This calibration recommends the B3LYP/SVP combination as a reliable and computationally efficient level of theory to assess the structures and absolute and relative 1H‐, 13C‐ and 11B NMR shift values of borylated aromatic compounds in future investigations.  相似文献   

3.
The relationships between experimental and theoretical 13C NMR chemical shifts of a pristine fullerene C60, monoadducts from [2 + n] cycloaddition (n = 1–3), and one [2 + 1] bis‐adduct are systematically analyzed for the first time by using diverse quantum‐chemical levels of theory. These levels involved B3LYP, B3PW91, B97‐2, mPW1PW91, PBE1PBE, and X3LYP hybrid functionals combined with 3‐21G, 6‐31G, 6‐31G(d), 6‐31G(d,p), 6‐31G(d,2p), LanL2DZ, and SDDAll basis sets. X3LYP/6‐31G approach is determined to have the lowest deviations from the 13C NMR experimental data compared to the other methods for all the fullerene compounds (mean absolute error value is 0.856 ppm and root mean squared error value is 1.197 ppm). The highest deviations are characteristic for α (sp2 C2/C5/C8/C10) and β (sp2 C6/C7/C11/C12) carbon atoms relative to a functionalization site and for those (sp3 C1/C9) directly attached with a side fragment in the [2 + n] monoadducts (n = 1–3). A probable reason of such deviation is that the approaches do not take into account a contribution of paramagnetic ring currents to 13C NMR chemical shifts. The results will be useful in design of novel fullerene derivatives and in performing unambiguous 13C NMR chemical shift assignments with modern quantum chemistry calculations.  相似文献   

4.
13C NMR chemical shifts have been calculated for structures of some substituted 3‐anilino‐2‐nitrobenzo‐[b]thiophenes ( 2 o) and 2‐anilino‐3‐nitrobenzo[b]thiophenes ( 3 o) derivatives containing OH, NH2, OMe, Me, Et, H, F, Cl and Br. The molecular structures were fully optimized using B3LYP/6‐31G(d,p). The calculation of the 13C shielding tensors employed the GAUSSIAN 03 implementation of the gauge‐including atomic orbital (GIAO) and continuous set of gauge transformations (CSGT) by using 6‐311++G(d,p) basis set at density functional levels of theories (DFT). The isotropic and the anisotropy parameters of chemical shielding for all compounds are calculated. The predicted 13C chemical shifts are derived from equation δ=δ0+δ where δ is the chemical shift, δ is the absolute shielding, and δ0 is the absolute shielding of the standard TMS. Excellent linear relationships have been observed between experimental and calculated 13C NMR chemical shifts for all derivatives  相似文献   

5.
6.
Density functional theory (DFT)/Becke–Lee–Yang–Parr (B3LYP) and gauge‐including atomic orbital (GIAO) calculations were performed on a number of 1,2,4‐triazole derivatives, and the optimized structural parameters were employed to ascertain the nature of their predominant tautomers. 13C and 15N NMR chemical shifts of 3‐substituted 1,2,4‐triazole‐5‐thiones and their propargylated derivatives were calculated via GIAO/DFT approach at the B3LYP level of theory with geometry optimization using a 6‐311++G** basis set. A good agreement between theoretical and experimental 13C and 15N NMR chemical shifts could be found for the systems investigated. The data generated were useful in predicting 15N chemical shifts of all the nitrogen atoms of the triazole ring, some of which could not be obtained in solution state 15N HMBC/HSQC NMR measurements. The energy profile computed for the dipropargylated derivatives was found to follow the product distribution profile of regioisomers formed during propargylation of 1,2,4‐triazole thiones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Cyclic five-membered ring sulfoxides and sulfones were prepared by a stepwise in situ oxidation of the corresponding sulfides with meta-chloroperbenzoic acid in an NMR tube. The oxidation was followed by NMR and both 1H and 13C NMR data were collected. The geometries of all of the compounds were optimized using the DFT B3LYP/6-31G7 method and the 13C and 1H chemical shifts were calculated for geometry-optimized structures with the DFT B3LYP/6-31++G7 method. The calculated 13C chemical shifts induced by oxidation (Δδ values) were in very good agreement with the experimental data and could be used to determine the oxidation state of the sulfur atom (–S–, –SO–, –SO2–). The characteristic differences of the induced oxidation chemical shifts of the carbon atoms in the α-position and β-position to sulfur were successfully used to distinguish between the diastereoisomeric sulfoxides and allowed configuration determination.  相似文献   

8.
Cyclic six-membered ring sulfoxides and sulfones were prepared by a stepwise in situ oxidation of the corresponding sulfides with meta-chloroperbenzoic acid in an NMR tube. The oxidation was followed by NMR spectra and the 1H and 13C NMR data were collected. The geometries of all of the compounds were optimized using the DFT B3LYP/6-31G∗∗ method and the 13C and 1H NMR chemical shifts were calculated for geometry-optimized structures with the DFT B3LYP/6-31++G∗∗ method. The calculated 13C NMR chemical shifts induced by oxidation (Δδ values) are in very good agreement with the experimental data and can be used to determine the oxidation state of the sulfur atom (-S-, -SO-, -SO2-). The characteristic differences of the induced oxidation chemical shifts of carbon atoms at the α- and β-position to sulfur were successfully used for distinguishing between the diastereoisomeric sulfoxides.  相似文献   

9.
QIU  Limei  GONG  Xuedong  WANG  Guixiang  ZHENG  Jian  XIAO  Heming 《中国化学》2009,27(3):455-468
Based on the optimized molecular geometries at the DFT‐B3LYP/6‐31G?? level, IR spectra, thermodynamic functions, as well as 13C and 1H NMR chemical shifts, were obtained and discussed for polynitro‐1,3‐bishomo‐pentaprismanes (PNBPP). The comparison of the calculated IR frequencies and NMR chemical shifts showed considerable agreements with the available experimental results. IR regions, 13C and 1H NMR chemical shifts of PNBPP were assigned. The relationships of the thermodynamic functions with temperature and the number of nitro groups were discussed, and it was found that the latter showed a good group additivity rule. These calculated data and discussions would be helpful for the further study of PNBPP.  相似文献   

10.
We carried out a series of zeroth‐order regular approximation (ZORA)‐density functional theory (DFT) and ZORA‐time‐dependent (TD)‐DFT calculations for molecular geometries, NMR chemical shifts, nucleus‐independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2(tBuMe2Si)2C4PbL1L2 (L1, L2 = tetrahydrofuran, Pyridine, N‐heterocyclic carbene), and their model molecules. We mainly discussed the Lewis‐base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n‐Huckel rule is applied to the fractional π‐electron number. The calculated 13C‐ and 207Pb‐NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the 13C‐NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the 207Pb‐NMR chemical shifts and J[Pb‐C] but also in the 13C‐NMR chemical shifts of carbons adjacent to the lead atom. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
The configuration at C‐3 of the 3α‐ and 3β‐hydroxy metabolites of tibolone was studied by extensive application of one‐ and two‐dimensional 1H and 13C NMR spectroscopy combined with molecular modeling performed at the B3LYP/6–31G(d) level. Using HF and DFT GIAO methods, shielding tensors of the two molecules were computed; comparison of the calculated NMR chemical shifts with the experimental values revealed that the density functional methods produced the best results for assigning proton and carbon resonances. Although steroids are relatively large molecules, the present approach appears accurate enough to allow the determination of relative configurations by using calculated 13C resonances; the chemical shift of pairs of geminal α/β hydrogen atoms can also be established by using calculated 1H resonances. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Density functional theory (DFT) calculations of 1H NMR chemical shifts for l ‐quebrachitol isomers were performed using the B3LYP functional employing the 6‐31G(d,p) and 6‐311 + G(2d,p) basis sets. The effect of the solvent on the B3LYP‐calculated NMR spectrum was accounted for using the polarizable continuum model. Comparison is made with experimental 1H NMR spectroscopic data, which shed light on the average uncertainty present in DFT calculations of chemical shifts and showed that the best match between experimental and theoretical B3LYP 1H NMR profiles is a good strategy to assign the molecular structure present in the sample handled in the experimental measurements. Among four plausible O‐methyl‐inositol isomers, the l ‐quebrachitol 2a structure was unambiguously assigned based only on the comparative analysis of experimental and theoretical 1H NMR chemical shift data. The B3LYP infrared (IR) spectrum was also calculated for the four isomers and compared with the experimental data, with analysis of the theoretical IR profiles corroborating assignment of the 2a structure. Therefore, it is confirmed in this study that a combined experimental/DFT spectroscopic investigation is a powerful tool in structural/conformational analysis studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of 2-aminonicotinic acid (2-ANA) was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR (1H and 13C) spectra of 2-aminonicotinic acid and its alkali metal salts were recorded. Characteristic shifts and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons (1H NMR) and carbons (13C NMR) in the series of studied alkali metal 2-aminonicotinates (2-AN) were observed too.Optimized geometrical structures of the studied compounds were calculated by the B3LYP method using the 6-311++G** basis set. Aromaticity indices, atomic charges, dipole moments and energies were also calculated. The theoretical chemical shifts in 1H and 13C NMR spectra and theoretical wavenumbers and intensities of IR and Raman spectra were determined. The calculated parameters were compared to the experimental characteristics of the studied compounds.  相似文献   

14.
Nine arylboronic acids, seven arylboronic catechol cyclic esters, and two trimeric arylboronic anhydrides (boroxines) are investigated using 11B solid‐state NMR spectroscopy at three different magnetic field strengths (9.4, 11.7, and 21.1 T). Through the analysis of spectra of static and magic‐angle spinning samples, the 11B electric field gradient and chemical shift tensors are determined. The effects of relaxation anisotropy and nutation field strength on the 11B NMR line shapes are investigated. Infrared spectroscopy was also used to help identify peaks in the NMR spectra as being due to the anhydride form in some of the arylboronic acid samples. Seven new X‐ray crystallographic structures are reported. Calculations of the 11B NMR parameters are performed using cluster model and periodic gauge‐including projector‐augmented wave (GIPAW) density functional theory (DFT) approaches, and the results are compared with the experimental values. Carbon‐13 solid‐state NMR experiments and spectral simulations are applied to determine the chemical shifts of the ipso carbons of the samples. One bond indirect 13C‐11B spin‐spin (J) coupling constants are also measured experimentally and compared with calculated values. The 11B/10B isotope effect on the 13C chemical shift of the ipso carbons of arylboronic acids and their catechol esters, as well as residual dipolar coupling, is discussed. Overall, this combined X‐ray, NMR, IR, and computational study provides valuable new insights into the relationship between NMR parameters and the structure of boronic acids and esters. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The 13C NMR spectra of copolymers of ethylene with 4‐methyl‐1‐hexene and 4‐methyl‐1‐pentene, respectively, were compared. The 4‐methyl‐1‐hexene/ethylene copolymer, which contains an unsymmetric 2‐methylbutyl branch, exhibits two distinct 13C NMR peaks for each of the pairwise methylenes spaced one, two, and three carbons from the backbone methine. The chemical shift differences for these pairwise methylenes are 57.4 Hz, 18.7 Hz, and 4.3 Hz, respectively, with chemical shift differences decreasing with increasing distance from the asymmetric carbon. The frequency differences for carbons farther from the branch were not distinguishable. The magnitude of the chemical shift difference also varies with temperature, with the first and second methylene carbon chemical shift differences decreasing with increasing temperature. The third carbon is almost unaffected by temperature variations. In contrast, the 4‐methyl‐1‐pentene/ethylene copolymer exhibits a single peak for each of the pairs of methylenes in the branch's vicinity. This is the first reported observation of a branched branch affecting the chemical shifts of main chain carbons in polyethylene containing short chain branches. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1210–1213, 2000  相似文献   

16.
Tropane, tropinone, pseudopelletierine and cocaine were oxidized in situ in a nuclear magnetic resonance (NMR) tube providing mixtures of exo/endo N‐oxides. Observed 13C chemical shifts were correlated with values calculated by gauge‐including atomic orbitals density functional theory (DFT) OPBE/6‐31G* method using DFT B3LYP/6‐31G* optimized geometries. The same method of 13C chemical shift calculation was applied on series of methyl‐substituted 1‐methylpiperidines and their epimeric N‐oxides described in literature. The results show that using this undemanding calculation method enables assignment of configuration of N–O group in N‐epimeric saturated heterocyclic N‐oxides. The approach enables assigning of the configuration with high degree of certainty even if NMR data of only one isomer are available. An improved method of in situ oxidation of starting amines in an NMR tube is also described. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The 13C NMR spectra of a series of methyl substituted 3-arylpiperidines and 4-aryl-4-piperidinols and related compounds are reported, and chemical shift data analysed in terms of the configuration and conformation of isomeric pairs. Special attention is given to the γ chemical shift parameter of axial methyl, and the effects of a nitrogen lone pair orbital and hydroxyl or acyloxy group on the chemical shifts of ring and methyl carbons.  相似文献   

18.
The comparison of the gauge‐including atomic orbital (GIAO) and the continuous set of gauge transformation methods for calculating nuclear magnetic chemical shifts (CSs) mainly at density functional levels of theory are presented. Isotropic 13 C and 15 N magnetic CS for 14 compounds of tetrazoles are reported. Compared with establishing a convenient and consistent protocol to be employed for confirming the experimental 13 C and 15 N NMR spectra of tetrazole compounds, different combinations of functionals and basis sets were considered. The most reliable results were obtained at GIAO/B3LYP/aug‐cc‐pVDZ with integral equation formulation for the polarizable continuum model (PCM), which has the smallest root mean square errors and can be used to calculate 13 C and 15 N NMR CS with a very high accuracy for tetrazoles. These results show that the accurately calculated 15N NMR CS of tetrazoles could be used for the evaluation of the intrinsic relationship between structure and explosive properties. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
13C NMR spectroscopic studies were performed for carbonyl compounds having a hydroxyl group, a carboalkoxy group, an acetoxy group, or a carboxyl group in various solvents with different polarities for observation of their behaviors of 13C NMR chemical shifts of carbonyl carbons in solutions. It was found that the chemical shifts of the carbonyl carbons in 13C NMR have good correlation with the empirical parameter for solvent polarities, ETN, depending on the structures. Inter- or intramolecular hydrogen bonding and dipolar-dipolar interactions appear to play a key role in this observation.  相似文献   

20.
Full (1)H and (13)C NMR chemical shift assignments were made for two sets of penam beta-lactams: namely, the diastereomeric (2S, 5S, 6S)-, (2S, 5R, 6R)-, (2S, 5S, 6R)-, and (2S, 5R, 6S)-methyl 6-(1,3-dioxoisoindolin-2-yl)-3,3-dimethyl-7-oxo-4-thia-1-aza-bicyclo[3.2.0]heptane-2-carboxylates (1-4) and (2S, 5R, 6R)-, (2S, 5S, 6R)-, and (2S, 5R, 6S)-6-(1,3-dioxoisoindolin-2-yl)-3,3-dimethyl-7-oxo-4-thia-1-aza-bicyclo[3.2.0]heptane-2-carboxylic acids (6-8). Each penam was then modeled as a family of conformers obtained from Monte Carlo searches using the AMBER* force field followed by IEFPCM/B3LYP/6-31G(d) geometry optimization of each conformer using chloroform solvation. (1)H and (13)C chemical shifts for each conformer were computed at the WP04, WC04, B3LYP, and PBE1 density functional levels as Boltzmann averages of IEFPCM/B3LYP/6-311 + G(2d,p) energies over each family. Comparisons between experimental and theoretical chemical shift data were made using the total absolute error (|Deltadelta| (T)) criterion. For the (1)H shift data, all methods were sufficiently accurate to identify the proper stereoisomers. Computed (13)C shifts were not always successful in identifying the correct stereoisomer, regardless of which DFT method was used. The relative ability of each theoretical approach to discriminate among stereoisomers on the basis of proton shifts was also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号