首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A new analytical method for phenylpropanolamine based on micellar electrokinetic chromatographic separation and laser‐induced fluorescence detection has been developed. Naphthalene‐2,3‐dicarboxaldehyde was used for precolumn derivatization of the nonfluorescent drug. Optimal separation and detection were obtained with an electrophoretic buffer of 50 mM sodium borate (pH 9.5) containing 15 mM sodium dodecyl sulfate and a He‐Cd laser ex: 442 nm, Δem: 500 nm). Linearity (r ≥ 0.99) of two orders of magnitude was generally obtained and the concentration limit of detection was in the ng/mL level. Coupled with a simple cleanup procedure, the method can be applied to the analysis of phenylpropanolamine in human plasma, with a limit of detection at 15 ng/mL. Recovery of phenylpropanolamine from plasma samples was about 90%.  相似文献   

2.
A CZE with near‐infrared (NIR) LIF detection method has been developed for the analysis of six low molecular weight thiols including glutathione, homocysteine, cysteine, γ‐glutamylcysteine, cysteinylglycine, and N‐acetylcysteine. For this purpose, a new NIR fluorescent probe, 1,7‐dimethyl‐3,5‐distyryl‐8‐phenyl‐(4'‐iodoacetamido)difluoroboradiaza‐s‐indacene was utilized as the labeling reagent, whose excitation wavelength matches the commercially available NIR laser line of 635 nm. The optimum procedure included a derivatization step of the free thiols at 45°C for 25 min and CZE analysis conducted within 14 min in the running buffer containing 16 mmol/L pH 7.0 sodium citrate and 60% v/v ACN. The LODs (S/N = 3) ranged from 0.11 nmol/L for N‐acetylcysteine to 0.31 nmol/L for γ‐glutamylcysteine, which are better than or comparable to those reported with other derivatization‐based CE‐LIF methods. As the first trial of NIR CE‐LIF method for thiol determination, the practical application of the proposed method has been validated by detecting thiols in cucumber and tomato samples with recoveries of 96.5–104.3%.  相似文献   

3.
Altered levels of thiols in biological fluids are considered to be an important indicator for several diseases. In this article, 1,3,5,7‐tetramethyl‐8‐bromomethyl‐difluoroboradiaza‐s‐indacene is proposed as a fluorescent derivatization reagent for the determination of thiols including glutathione, cysteine, N‐acetylcysteine, and homocysteine by HPLC. Under the optimized derivatization and separation conditions, a baseline separation of all the four derivatives has been achieved using isocratic elution on an RP C8 column within 26 min. With fluorescence detection at 505 and 525 nm for the excitation and emission, respectively, the LODs (S/N = 3) are from 0.2 nM (glutathione) to 0.8 nM (cysteine). The feasibility of this method in real samples has been evaluated by the determination of thiols in human plasma from the healthy persons and hypertensive patients with recoveries of 92–105.3%.  相似文献   

4.
A pressure‐assisted CEC with ESI‐MS based on poly(1‐hexadecene‐co‐trimethylolpropane trimethacrylate) monolithic column for rapid analysis of two β2‐agonists and three narcotics was established in this article. After the organic polymer‐based monolithic column was prepared by an in‐situ polymerization procedure, a systematic investigation of the pressure‐assisted CEC separation and ESI‐MS detection parameters was performed. Baseline separation of the studied analytes could be obtained using the solution containing 75% ACN v/v and 20 mmol/L ammonium acetate with pH 8.0 as running buffer, when applying separation voltage of 20 kV and assisted pressure of 5 bar. Under the optimized conditions, two β2‐agonists and three narcotics could be completely resolved and accurately determined within 15 min. Finally, the proposed method was successfully used for real urine samples detection.  相似文献   

5.
A novel online column‐switching chiral high‐performance liquid chromatography method was developed and validated for the simultaneous determination of naftopidil (NAF) and its O‐desmethyl metabolites (DMN) enantiomers in rat feces. Direct and multiple injections of supernatant from rat feces homogenate were allowed through the column‐switching system. Analyte extraction was performed on the Capcell Pak mixed‐functional column by acetonitrile–phosphate buffer (pH 7.4; 10 mm ; 8:92, v/v) flowing at 1 mL/min. Separation of NAF and DMN enantiomers was achieved on the Chiralpak IA column by methanol–acetonitrile–acetate buffer (pH 5.3; 5 mm ; 45:33:22, v/v/v) flowing at 0.5 mL/min. The analytes were measured with a fluorescence detector at 290 nm (λex) and 340 nm (λem). The validated method showed a good linearity [22.5–15,000 ng/mL for (+)‐/(?)‐NAF; 35–25,000 ng/mL for (+)‐/(?)‐DMN] and the lowest limits of quantification for NAF and DMN enantiomers were 22.5 and 35 ng/mL, respectively. Both intra‐ and inter‐day variations were <10%. The assay was successfully applied to the fecal excretion of NAF and DMN enantiomers in rat after single oral administration of (±)‐NAF. Nonstereoselective excretion of (+)‐ and (?)‐NAF was found in feces, while stereoselective excretion of (+)‐ and (?)‐DMN was observed with higher excretion levels of (+)‐DMN, indicating that there may exist stereoselective metabolism for NAF enantiomers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
On the line of a previous work on the spectral properties of some of heteroaryl chalcone, the effect of medium acidity and photoreactivity of 3‐(4‐dimethylamino‐phenyl)‐1‐(2,5‐dimethyl‐thiophen‐3‐yl)‐propenone (DDTP) has been investigated in dimethylformamide and in chloromethane solvents such as methylenechloride, chloroform and carbon tetrachloride. The dye solution (ca. 5×10−4 mol·L−1 in DMF) gives a good laser emission in the range 470–560 nm with emission maximum at 515 nm upon pumping by nitrogen laser (λex=337.1 nm). The laser parameters such as gain coefficient (α), emission cross section (δe) and half life energy (E1/2) at maximum laser emission are also determined.  相似文献   

7.
A separation method for O6‐benzylguanine (O6‐BG) and 8‐oxo‐O6‐benzylguanine (8‐oxo‐O6‐BG) is developed by using MEKC. This study includes the optimization of separation and incubation parameters for both off‐line and on‐line procedures. The BGE consisted of 25 mM sodium phosphate buffer‐methanol (70:30, v/v), apparent pH 7.4, in which SDS and methyl‐β‐cyclodextrin were dissolved yielding final concentrations of 50 and 15 mM, respectively. Separations were performed at 15 kV using an untreated fused‐silica capillary (40 cm length, effective length is 30 cm) with the detection wavelength at 195 nm. The capillary was kept at 15°C. Good performances were demonstrated for the repeatability and linearity. The LOQ was determined to be 14 μM for 8‐oxo‐O6‐BG (S/N = 10). The accuracy values showed a bias of +7.9% for 50 μM and –7.0% for 100 μM. Premix and transverse diffusion of laminar flow profiles (TDLFP) methods were used for on‐line mixing and reaction of the substrate O6‐BG with aldehyde oxidase. Both procedures were successful in mixing as well as subsequent separation of the substrate and the metabolite, while the repeatability of TDLFP (14.7% (n = 3)) was much better than the premix technique.  相似文献   

8.
The aim of study was to develop a suitable analytical method for simultaneous estimation of levodopa, carbidopa and 3‐O‐methyl dopa in rat plasma. Chromatographic separation of plasma samples was achieved using a reverse‐phase C18 column. The mobile phase used consisted of a mixture of methanol and phosphate buffer (10 mM , pH 3.50) in the ratio of 90:10 v/v. All analytes were estimated by electrochemical detection at +800 mV. The developed method has been validated as per the standard guidelines. Precision study results were found to be satisfactory, with percentage relative standard deviation for repeatability and intermediate precision <3.96 and 6.56%, respectively, for all analytes detected in rat plasma. The developed method in rat plasma was found to be simple, rapid, accurate, precise and specific. The proposed method has been successfully applied for analysis of rat plasma samples obtained during an oral pharmacokinetic study of sustained release pellets of levodopa and carbidopa in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Amino acids play a key role in food analysis, clinical diagnostics, and biochemical research. Capillary electrophoresis with laser‐induced fluorescence detection was used for the analysis of several amino acids. Amino acid labeling with fluorescein isothiocyanate was conducted using microwave‐assisted derivatization at 80°C (680 W) during only 150 s. Good electrophoretic resolution was obtained using a background electrolyte composed of sodium tetraborate buffer (100 mM; pH 9.4) and β‐cyclodextrin (10 mM), and the limits of quantification were 3–30 nM. The developed capillary electrophoresis with laser‐induced fluorescence method was used to analyze amino acids in Dunaliella salina green algae grown under different conditions. A simple extraction technique based on electroporation of the cell membrane was introduced. A home‐made apparatus allowed the application of direct and alternating voltages across the electrochemical compartment containing a suspension of microalgae in distilled water at 2.5 g/L. A direct voltage of 12 V applied for 4 min gave the optimum extraction yield. Results were comparable to those obtained with accelerated‐solvent extraction. The efficiency of electroporation in destroying microalgae membranes was shown by examining the algae surface morphology using scanning electron microscopy. Stress conditions were found to induce the production of amino acids in Dunaliella salina cells.  相似文献   

10.
The banned addition of psychiatric drugs such as phenothiazines to animal feed and foodstuffs increases the risk of human organ lesion. Phenothiazines usually exhibit weak native fluorescence and can be oxidized to strongly fluorescent compounds. In this study, a novel, sensitive and convenient method of HPLC‐fluorescence detection based on post‐column on‐line oxidizing with lead dioxide solid‐phase reactor has been developed for simultaneous determination of three banned psychotropic drugs, promethazine, chlorpromazine and thioridazine. Three compounds were successfully separated on an Agilent TC‐C18 column with mobile phase of acetonitrile (A) and water (B), both containing 0.5% (v/v) formic acid. A gradient elution was programmed and fluorimetric detection was performed at λex/λem of 332/373 nm for promethazine, 340/380 nm for chlorpromazine and 352/432 nm for thioridazine. The calibration graphs gave good linearity over the concentration ranges of 30.0–4976.4 µg/L for promethazine, 2.0–2153.2 µg/L for chlorpromazine, and 15.0–3088.0 µg/L for thioridazine, and correlation coefficients (r) were ≥0.995. The method was applied to the determination of phenothiazines in pig feed and pig tissue, and the average spiked recoveries were in the range 69.1–115.4%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A simple method that consumes low organic solvent is proposed for the analysis of phthalic acid esters in Chinese white spirit using dispersive liquid–liquid microextraction coupled with sweeping‐micellar electrokinetic chromatography. Tetrachloromethane and white‐spirit‐containing ethanol were used as the extraction and dispersing solvents, respectively. The electrophoresis separation buffer was composed of 5 mM β‐cyclodextrin, 50 mM sodium dodecyl sulfate and 25 mM borate buffer (pH 9.2) with 9% acetonitrile, enabling the baseline resolution of the analytes within 13 min. Under the optimum conditions, satisfactory linearities (5–1000 ng/mL, r ≥ 0.9909), good reproducibility (RSD ≤ 6.7% for peak area, and RSD ≤ 2.8% for migration time), low detection limits (0.4–0.8 ng/mL) and acceptable recovery rates (89.6–105.7%) were obtained. The proposed method was successfully applied to 22 Chinese white spirits, and the content of dibutyl phthalate in 55% of the samples exceeded the Specific Migration Limit of 0.3 mg/kg established by the domestic and international regulations.  相似文献   

12.
α1‐Acid glycoprotein (AGP) was previously shown to be a marker candidate of disease progression and prognosis of patients with malignancies by analysis of its glycoforms via lectins. Herein, affinity capillary electrophoresis of fluorescein‐labeled AGP using lectins with the aid of laser‐induced fluorescence detection was developed for quantitative evaluation of the fractional ratios of concanavalin A‐reactive or Aleuria aurantia lectin‐reactive AGP. Labeled AGP was applied at the anodic end of a fused‐silica capillary (50 μm id, 360 μm od, 27 cm long) coated with linear polyacryloyl‐β‐alanyl‐β‐alanine, and electrophoresis was carried out for about 10 min in 60 mM 3‐morpholinopropane‐1‐sulfonic acid‐NaOH buffer (pH 7.35). Addition of the lectins to the anode buffer resulted in the separation of lectin‐reactive glycoform peaks from lectin‐non‐reactive glycoform peaks. Quantification of the peak area of each group revealed that the percent of lectin‐reactive AGP is independent of a labeling ratio ranging from 0.4 to 1.5 mol fluorescein/mol AGP, i.e. the standard deviation of 0.5% for an average of 59.9% (n=3). In combination with a facile procedure for micro‐purification of AGP from serum, the present procedure, marking the reactivity of AGP with lectins, should be useful in determining the prognosis for a large number of patients with malignancies.  相似文献   

13.
A highly K+‐selective two‐photon fluorescent probe for the in vitro monitoring of physiological K+ levels in the range of 1–100 mM is reported. The two‐photon excited fluorescence (TPEF) probe shows a fluorescence enhancement (FE) by a factor of about three in the presence of 160 mM K+, independently of one‐photon (OP, 430 nm) or two‐photon (TP, 860 nm) excitation and comparable K+‐induced FEs in the presence of competitive Na+ ions. The estimated dissociation constant (Kd) values in Na+‐free solutions (KdOP=(28±5) mM and KdTP=(36±6) mM ) and in combined K+/Na+ solutions (KdOP=(38±8) mM and KdTP=(46±25) mM ) reflecting the high K+/Na+ selectivity of the fluorescent probe. The TP absorption cross‐section (σ2PA) of the TPEF probe+160 mM K+ is 26 GM at 860 nm. Therefore, the TPEF probe is a suitable tool for the in vitro determination of K+.  相似文献   

14.
A rapid, sensitive, and selective precolumn derivatization method for the simultaneous determination of eight thiophenols using 3‐(2‐bromoacetamido)‐N‐(9‐ethyl‐9H )‐carbazol as a labeling reagent by high‐performance liquid chromatography with fluorescence detection has been developed. The labeling reagent reacted with thiophenols at 50°C for 50 min in aqueous acetonitrile in the presence of borate buffer (0.10 mol/L, pH 11.2) to give high yields of thiophenol derivatives. The derivatives were identified by online postcolumn mass spectrometry. The collision‐induced dissociation spectra for thiophenol derivatives gave the corresponding specific fragment ions at m/z 251.3, 223.3, 210.9, 195.8, and 181.9. At the same time, derivatives exhibited intense fluorescence with an excitation maximum at λex = 276 nm and an emission maximum at λem = 385 nm. Excellent linear responses were observed for all analytes over the range of 0.033–6.66 μmol/L with correlation coefficients of more than 0.9997. Detection limits were in the range of 0.94–5.77 μg/L with relative standard deviations of less than 4.54%. The feasibility of derivatization allowed the development of a rapid and highly sensitive method for the quantitative analysis of trace levels of thiophenols from some rubber products. The average recoveries (n = 3) were in the range of 87.21–101.12%.  相似文献   

15.
A selective, sensitive and rapid high‐performance liquid chromatography method with post‐column hydrolysis and fluorescence detection was developed for the simultaneous quantification of acetylsalicylic acid and its metabolite salicylic acid in human plasma. Following the addition of 2‐hydroxy‐3‐methoxybenzoic acid as internal standard and simple protein precipitation with acetonitrile, the analytes were separated on a ProntoSIL 120 C18 ace‐EPS column (150 × 2 mm, 3 µm) protected by a C8 guard column (5 µm). The mobile phase, 10 mm formic acid in water (pH 2.9) and acetonitrile (70:30, v/v), was used at a flow rate of 0.35 mL/min. After on‐line post‐column hydrolysis of acetylsalicylic acid (ASA) to salicylic acid (SA) by addition of alkaline solution, the analytes were measured at 290 nm (λex) and 400 nm (λem). The method was linear in the concentration ranges between 0.05 and 20 ng/μL for both ASA and SA with a lower limit of quantification of 25 pg/μL for SA and 50 pg/μL for ASA. The limit of detection was 15 pg/μL for SA and 32.5 pg/μL for ASA. The analysis of ASA and SA can be carried out within 8 min; therefore this method is suitable for measuring plasma concentrations of salicylates in clinical routine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Poly[(2‐alkyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,3‐phenylenevinylene)]s ( 8 ) and poly[(2‐alkyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)]s ( 10 ) were synthesized by the Wittig reaction to provide materials containing 45–62% cis‐vinylene bonds. The optical characteristics of 8 and 10 were compared with those of their respective isomers, 3 and 4 , the cis‐vinylene contents of which were significantly lower (9–16%). Although a greater fraction of cis‐CH?CH linkages caused the absorption maximum (λmax) of 8 and 10 to be slightly blueshifted (by ~3–6 nm) from that of 3 and 4 , the impact of the vinylene bond geometry appeared to be negligible on their fluorescence spectra. The fluorescence quantum efficiencies of 8 and 10 were estimated to be approximately 0.25 and 0.72, respectively. Both 8 (λmax ≈ 445 or 462 nm) and 10 (λmax ≈ 480 or 506 nm) were electroluminescent, showing effective color tuning by the controlled insertion of m‐phenylene moieties. The external electroluminescence quantum efficiencies were determined to be 4.26 × 10?3% for 8 and 0.63% for 10 . The cis/trans‐vinylene bond ratio had a great impact on the electroluminescence device performance of 8 but a much smaller impact on the performance of 10 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 303–316, 2004  相似文献   

17.
A rapid and robust CE method using a long wavelength fluorescent reagent 1,7‐dimethyl‐3,5‐distyryl‐8‐phenyl‐(2‐maleimide)difluoroboradiaza‐s‐indacene as the labeling reagent has been developed for the simultaneous determination of thiols, including glutathione, cysteine, homocysteine, N‐acetylcysteine, cysteinylglycine, and penicillamine. The derivatization reaction was carried out in 14 mmol/L pH 8.5 borate buffer at 30°C for 6 min and the labeled thiols derivatives were separated with the running buffer containing 30 mmol/L pH 7.4 phosphate, 30% v/v acetonitrile and 8 mmol/L SDS within 12 min. Detection limits ranged from 0.4 to 2.4 nmol/L. To demonstrate the capability of this method, it was applied to the analysis of thiols in human urine with recoveries of 92.4–105.6%. The derivatization reaction was much faster at milder conditions, and the analysis was rapider. Moreover, with excitation wavelength at long wavelength region, background interference from samples was reduced effectively. The present method seems to be a potential choice for quantifying thiols in human urine.  相似文献   

18.
Monomethylarginine, asymmetric dimethylarginine and symmetric dimethylarginine were separated on a Wakopak Combi ODS with an acetonitrile–100 mm potassium phosphate buffer (pH 7.0; 1:1, v/v). Dimethylarginines were derived from o‐phthalaldehyde for the fluorescence detector and from 6‐ferrocenyl‐1‐hexanethiol for the electrochemical detector. The detection limits of the dimethylarginines in spiked plasma were 0.3–0.5 pmol by electrochemical detection and 1–2 pmol by fluorescence detection. The detection limits were improved over 30 times by electrochemical detection and 10 times by fluorescence detection compared with previous reports. In previous derivatization liquid chromatography, the reaction solutions, o‐phthalaldehyde, 2‐mercaptethanol and dimethylarginines were unstable and required quick derivatization at 4°C. By our proposed pre‐column methods, the dimethylarginines were derivatized at room temperature and the fluorescent products were stable for 6 h. The manipulation performance was greatly advanced compared with previous LC reports. This is the first report on stable and sensitive dimethylarginines by dual detection. The selectivity was also improved by dual detection. The proposed method was applied to preliminary monitoring of dimethylargines in plasma and urine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In the present study, we propose the first HPLC method coupled to postcolumn derivatization for the determination of rimantadine in human urine samples. The analyte and amantadine (internal standard) were isocratically separated using an RP monolithic stationary phase (100 × 4.6 mm id) with a mobile phase consisting of CH3OH/phosphate buffer (25 mmol/L, pH 3.0) at a volume ratio of 50:50. Postcolumn derivatization involved on‐line reaction with o‐phthalaldehyde (20 mmol/L) and N‐acetyl‐cysteine (5 mmol/L) at alkaline medium (100 mmol/L borate pH 11.0). Spectrofluorimetric detection at λex/λem = 340/455 nm enabled the selective and sensitive determination of rimantadine in urine samples at a range of 50–500 ng/mL with an LOD of 5 ng/mL. Human urine samples were analyzed successfully after SPE using hydrophilic‐lipophilic balanced RP cartridges (30 mg/mL, Oasis HLB). Recoveries ranged between 89.7 and 102.7%.  相似文献   

20.
A practical chiral CE method, using sulfated‐β‐CD as chiral selector, was developed for the enantioseparation of glycopyrrolate containing two chiral centers. Several parameters affecting the separation were studied, including the nature and concentration of the chiral selectors, BGE pH, buffer type and concentration, separation voltage, and temperature. The separation was carried out in an uncoated fused‐silica capillary of (effective length 40 cm) × 50 μm id with a separation voltage of 20 kV using 30 mM sodium phosphate buffer (pH 7.0, adjusted with 1 M sodium hydroxide) containing 2.0% w/v sulfated‐β‐CD at 25°C. Finally, the method for determining the enantiomeric impurities of RS‐glycopyrrolate was proposed. The method was further validated with respect to its specificity, linearity range, accuracy and precision, LODs, and quantification in the expected range of occurrence for the isomeric impurities (0.1%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号