首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stereochemical study of five sterically crowded phenylselanylalkenes obtained via the hydroselenation of either terminal or internal alkynes with benzeneselenol catalyzed by the nanosized Ni complexes has been carried out based on the experimental HMBC measurements and theoretical second order palarization propagator approach (SOPPA) calculations of their 77Se? 1H spin–spin coupling constants across double bond in combination with the energy‐based theoretical conformational analysis performed at the MP2/6‐311G** level. It has been found that studied phenylselanylalkenes adopt mainly skewed s‐cis conformation with the noticeable out‐of‐plane deviations of the phenylselanyl and phenyl groups. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Theoretical energy‐based conformational analysis of bis(2‐phenethyl)vinylphosphine and related phosphine oxide, sulfide and selenide synthesized from available secondary phosphine chalcogenides and vinyl sulfoxides is performed at the MP2/6‐311G** level to study stereochemical behavior of their 31P–1H spin–spin coupling constants measured experimentally and calculated at different levels of theory. All four title compounds are shown to exist in the equilibrium mixture of two conformers: major planar s‐cis and minor orthogonal ones, while 31P–1 H spin–spin coupling constants under study are found to demonstrate marked stereochemical dependences with respect to the geometry of the coupling pathways, and to the internal rotation of the vinyl group around the P(X)‐C bonds (X = LP, O, S and Se), opening a new guide in the conformational studies of unsaturated phosphines and phosphine chalcogenides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Four‐component relativistic calculations of 77Se–13C spin–spin coupling constants have been performed in the series of selenium heterocycles and their parent open‐chain selenides. It has been found that relativistic effects play an essential role in the selenium–carbon coupling mechanism and could result in a contribution of as much as 15–25% of the total values of the one‐bond selenium–carbon spin‐spin coupling constants. In the overall contribution of the relativistic effects to the total values of 1J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin‐orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second‐order polarization propagator approach (CC2) with the four‐component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of 1J(Se,C). Solvent effects in the values of 1J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2–78.4) are next to negligible decreasing negative 1J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of 77Se–13C spin‐spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1–0.2‐Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The calculations of geminal and vicinal 29Si–1H spin–spin coupling constants across double bond in 15 alkenylmethylsilanes and alkenylchlorosilanes were carried out at the second‐order polarization propagator approach level in a good agreement with experiment. Two structural trends, namely, (i) the geometry of the coupling pathway and (ii) the effect of the electrowithdrawing substituent, have been interpreted in terms of the natural J‐coupling analysis within the framework of the natural bond orbital approach. Thus, the marked difference between cisoidal and transoidal 29Si–1H spin–spin coupling constants across double bond was accounted for the delocalization contributions including bonding and antibonding Si–C and C–H orbitals, whereas the chlorine effect was explained in terms of the steric contributions including bonding Si–Cl orbitals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Experimental measurements and second‐order polarization propagator approach (SOPPA) calculations of 77Se? 1H spin–spin coupling constants together with theoretical energy‐based conformational analysis in the series of 2‐substituted selenophenes have been carried out. A new basis set optimized for the calculation of 77Se? 1H spin–spin coupling constants has been introduced by extending the aug‐cc‐pVTZ‐J basis for selenium. Most of the spin–spin coupling constants under study, especially vicinal 77Se? 1H couplings, demonstrated a remarkable stereochemical behavior with respect to the internal rotation of the substituent in the 2‐position of the selenophene ring, which is of major importance in the stereochemical studies of the related organoselenium compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A systematic theoretical study of geminal and vicinal 77Se–13C spin–spin coupling constants in the series of the open‐chain selenides and selenium‐containing heterocycles revealed that relativistic effects play an essential role in the selenium–carbon coupling mechanism, especially when the coupling pathway includes a triple bond, contributing to about 10–15% of their total values and noticeably improving the agreement of the calculated couplings with experiment. Both geminal and vicinal 77Se–13C spin–spin coupling constants show marked stereochemical behavior as documented by their calculated dihedral angle dependence that could be used as a practical guide in stereochemical studies of organoselenium compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Seleno‐carbohydrates are those in which the oxygen of the glycosidic bond or the hydroxyl group is artificially replaced with selenium. This substitution changes 1H and 13C chemical shifts and produces spin coupling constants involving 77Se. Coupling constants, such as 2‐3J(77Se, 1H), are likely to be useful for conformational analyses of glycans because such couplings are never observed in natural glycans. Several papers have discussed the relationship between 2‐3J(77Se, 1H) and conformation; however, only few reports describe 1‐3J(77Se, 13C), which could also be useful. Here, we obtain 77Se coupling constants of seleno‐carbohydrates from 77Se‐selective HR‐HMBC and 77Se satellites in 1D 13C spectra and examine their conformations using the Newman projection scheme.  相似文献   

8.
One‐bond spin–spin coupling constants involving selenium of seven different types, 1 J(Se,X), X = 1H, 13C, 15 N, 19 F, 29Si, 31P, and 77Se, were calculated in the series of 14 representative compounds at the SOPPA(CCSD) level taking into account relativistic corrections evaluated both at the RPA and DFT levels of theory in comparison with experiment. Relativistic corrections were found to play a major role in the calculation of 1 J(Se,X) reaching as much as almost 170% of the total value of 1 J(Se,Se) and up to 60–70% for the rest of 1 J(Se,X). Scalar relativistic effects (Darwin and mass‐velocity corrections) by far dominate over spin–orbit coupling in the total relativistic effects for all 1 J(Se,X). Taking into account relativistic corrections at both random phase approximation and density functional theory levels essentially improves the agreement of theoretical results with experiment. The most ‘relativistic’ 1 J(Se,Se) demonstrates a marked Karplus‐type dihedral angle dependence with respect to the mutual orientation of the selenium lone pairs providing a powerful tool for stereochemical analysis of selenoorganic compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
《Chemphyschem》2004,5(3):349-366
Measured one‐bond spin–spin coupling constants (SSCC) 1J(CC) can be used to describe the nature of the C–C bond, provided one is able to separate the various coupling mechanisms leading to 1J(CC). The Fermi‐contact (FC) term probes the first‐order density at the positions of the coupling nuclei, whereas the noncontact terms (the paramagnetic spin orbit (PSO) and the spin–dipole (SD) terms) probe the π character of the C–C bond (the diamagnetic spin orbit (DSO) term can mostly be neglected). A model is tested, in which the value of the FC(CC) term is estimated with the help of measured SSCCs 1J(CH). The difference between the measured J(CC) and the estimated FC(CC) values, Δ(CC)=PSO(CC)+SD(CC)+DSO(CC), provides a semiquantitative measure of the π character of a C–C multiple bond. The applicability and limitations of this approach are discussed by partitioning the four Ramsey terms of the SSCC 1J(CC) into one‐ and two‐orbital contributions. The FC, PSO, and SD terms of 1J(CC) are explained and analyzed with regard to their relationship to other C–C bond properties. It is shown that empirical relationships between measured SSCCs and the s character of a bond need reconsideration.  相似文献   

10.
A broadband proton–proton‐decoupled CPMG‐HSQMBC method for the precise and direct measurement of long‐range heteronuclear coupling constants is presented. The Zangger–Sterk‐based homodecoupling scheme reported herein efficiently removes unwanted proton–proton splittings from the heteronuclear multiplets, so that the desired heteronuclear couplings can be determined simply by measuring frequency differences between singlet maxima in the resulting spectra. The proposed pseudo‐1D/2D pulse sequences were tested on nucleotides, a metal complex incorporating P heterocycles, and diglycosyl (di)selenides, as well as on other carbohydrate derivatives, for the extraction of nJ(1H,31P), nJ(1H,77Se), and nJ(1H,13C) values, respectively.  相似文献   

11.
A spherical Gaussian nuclear charge distribution model has been implemented for spin‐free (scalar) and two‐component (spin–orbit) relativistic density functional calculations of indirect NMR nuclear spin–spin coupling (J‐coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J‐couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg22+, and Tl? X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite‐nucleus effects.  相似文献   

12.
Calculations of 1 JNH, 1h JNH and 2h JNN spin–spin coupling constants of 27 complexes presenting N–H·N hydrogen bonds have allowed to analyze these through hydrogen‐bond coupling as a function of the hybridization of both nitrogen atoms and the charge (+1, 0, ? 1) of the complex. The main conclusions are that the hybridization of N atom of the hydrogen bond donor is much more important than that of the hydrogen bond acceptor. Positive and negative charges (cationic and anionic complexes) exert opposite effects while the effect of the transition states ‘proton‐in‐the‐middle’ is considerable. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Unambiguous resonance assignments of diastereotopic CH2 protons in the anomeric side chain of nine alkyl‐ and aralkylselenoglycosides have been carried out on the basis of experimental CPMG‐HSQMBC measurements and theoretical second order polarization propagator approach (SOPPA) calculations of geminal 77Se‐1H spin‐spin coupling constants involving diastereotopic pro‐R and pro‐S protons. Theoretical conformational analyses have been performed at the MP2/6‐311G** level. The conformational space of each of the selenoglycosides under study could be adequately described as a mixture of six interconverting conformers with the molar fractions depending on the nature of the side chain substituent at the selenium atom. The good agreement observed between measured and the weighted conformational averaged values of the calculated coupling constants provides a basis for reliable diastereotopic assignments in this type of carbohydrate structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This work reports on the comprehensive calculation of the NMR one‐bond spin–spin coupling constants (SSCCs) involving carbon and tellurium, 1J(125Te,13C), in four representative compounds: Te(CH3)2, Te(CF3)2, Te(C?CH)2, and tellurophene. A high‐level computational treatment of 1J(125Te,13C) included calculations at the SOPPA level taking into account relativistic effects evaluated at the 4‐component RPA and DFT levels of theory, vibrational corrections, and solvent effects. The consistency of different computational approaches including the level of theory of the geometry optimization of tellurium‐containing compounds, basis sets, and methods used for obtainig spin–spin coupling values have also been discussed in view of reproducing the experimental values of the tellurium–carbon SSCCs. Relativistic corrections were found to play a major role in the calculation of 1J(125Te,13C) reaching as much as almost 50% of the total value of 1J(125Te,13C) while relativistic geometrical effects are of minor importance. The vibrational and solvent corrections account for accordingly about 3–6% and 0–4% of the total value. It is shown that taking into account relativistic corrections, vibrational corrections and solvent effects at the DFT level essentially improves the agreement of the non‐relativistic theoretical SOPPA results with experiment. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Indirect relativistic bridge effect (IRBE) and indirect relativistic substituent effect (IRSE) induced by the ‘heavy’ environment of the IV‐th, V‐th and VI‐th main group elements on the one‐bond and geminal 13C? 1H spin–spin coupling constants are observed, and spin‐orbit parts of these two effects were interpreted in terms of the third‐order Rayleigh–Schrödinger perturbation theory. Both effects, IRBE and IRSE, rapidly increase with the total atomic charge of the substituents at the coupled carbon. The accumulation of IRSE for geminal coupling constants is not linear with respect to the number of substituents in contrast to the one‐bond couplings where IRSE is an essentially additive quantity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The experimental spin–spin coupling constants (SSCCs) for 1,3‐ and 1,4‐difluorobenzene have been determined anew, and found to be consistent with previously determined values. SSCCs for 1,2‐, 1,3‐, and 1,4‐difluorobenzene have been analyzed by comparing them with the coupling constants computed using the second‐order polarization propagator approximation (SOPPA) and the equation‐of‐motion coupled cluster singles and doubles method (EOM‐CCSD). Eighty experimental values have been analyzed using SOPPA calculations, and a subset of 40 values using both SOPPA and EOM‐CCSD approaches. One‐bond coupling constants 1J(C? C) and 1J(C? F) are better described by EOM‐CCSD, whereas one‐bond 1J(C? H) values are better described by SOPPA. An empirical equation is presented which allows for the prediction of unknown coupling constants from computed SOPPA values. A similar approach may prove useful for predicting coupling constants in larger systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Benchmark calculations of geminal and vicinal 29Si–1H spin–spin coupling constants across double bond in three reference alkenylsilanes have been carried out at both DFT and SOPPA levels in comparison with experiment. At the former, four density functionals, B3LYP, B3PW91, PBE0 and KT3, were tested in combination with five representative basis sets. At the latter, three main SOPPA‐based methods, SOPPA, SOPPA(CC2) and SOPPA(CCSD), were examined in combination with the same series of basis sets. On the whole, the wavefunction methods showed much better results as compared to DFT, with the most efficient combination of SOPPA/cc‐pVTZ‐su2 characterized by a mean absolute error of only 0.4 Hz calculated for a set of nine coupling constants in three compounds with a sample span of around 40 Hz. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A systematic study of the one‐bond and long‐range J(C,C), J(C,H) and J(H,H) in the series of nine bicycloalkanes was performed at the SOPPA level with special emphasis on the coupling transmission mechanisms at bridgeheads. Many unknown couplings were predicted with high reliability. Further refinement of SOPPA computational scheme adjusted for better performance was carried out using bicyclo[1.1.1]pentane as a benchmark to investigate the influence of geometry, basis set and electronic correlation. The calculations performed demonstrated that classical ab initio SOPPA applied with the locally dense Dunning's sets augmented with inner core s‐functions used for coupled carbons and Sauer's sets augmented with tight s‐functions used for coupled hydrogens performs perfectly well in reproducing experimental values of different types of coupling constants (the estimated reliability is ca 1–2 Hz) in relatively large organic molecules of up to 11 carbon atoms. Additive coupling increments were derived for J(C,C), J(C,H) and J(H,H) based on the calculated values of coupling constants within SOPPA in the model bicycloalkanes, in reasonably good agreement with the known values obtained earlier on pure empirical grounds. Most of the bridgehead couplings in all but one bicycloalkane appeared to be essentially additive within ca 2–3 Hz while bicyclo[1.1.1]pentane demonstrated dramatic non‐additivity of ?14.5 Hz for J(C,C), +16.6 Hz for J(H,H) and ?5.5 Hz for J(C,H), in line with previous findings. Non‐additivity effects in the latter compound established at the SOPPA level should be attributed to the through‐space non‐bonded interactions at bridgeheads due to the essential overlapping of the bridgehead rear lobes which provides an additional and effective non‐bonding coupling path for the bridgehead carbons and their protons in the bicyclopentane framework. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The computational study of the one‐bond 29Si–13C spin–spin coupling constants has been performed at the second‐order polarization propagator approximation (SOPPA) level in the series of 60 diverse silanes with a special focus on the main factors affecting the accuracy of the calculation including the level of theory, the quality of the basis set, and the contribution of solvent and relativistic effects. Among three SOPPA‐based methods, SOPPA(MP2), SOPPA(CC2), and SOPPA(CCSD), the best result was achieved with SOPPA(CCSD) when used in combination with Sauer's basis set aug‐cc‐pVTZ‐J characterized by the mean absolute error of calculated coupling constants against the experiment of ca 2 Hz in the range of ca 200 Hz. The SOPPA(CCSD)/aug‐cc‐pVTZ‐J method is recommended as the most accurate and effective computational scheme for the calculation of 1J(Si,C). The slightly less accurate but essentially more economical SOPPA(MP2)/aug‐cc‐pVTZ‐J and/or SOPPA(CC2)/aug‐cc‐pVTZ‐J methods are recommended for larger molecular systems. It was shown that solvent and relativistic corrections do not play a major role in the computation of the total values of 1J(Si,C); however, taking them into account noticeably improves agreement with the experiment. The rovibrational corrections are estimated to be of about 1 Hz or 1–1.5% of the total value of 1J(Si,C). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In the 1H NMR spectra of the 1‐vinylpyrroles with amino‐ and alkylsulfanyl groups in 5 and 2 positions, an extraordinarily large difference between resonance positions of the HA and HB terminal methylene protons of the vinyl group is discovered. Also, the one‐bond 1J(Cβ,HB) coupling constant is surprisingly greater than the 1J(Cβ,HA) coupling constant in pyrroles under investigation, while in all known cases, there was a reverse relationship between these coupling constants. These spectral anomalies are substantiated by quantum chemical calculations. The calculations show that the amine nitrogen lone pair is removed from the conjugation with the π‐system of the pyrrole ring so that it is directed toward the HB hydrogen. These factors are favorable to the emergence of the intramolecular C–HB???N hydrogen bonding in the s‐cis(N) conformation. On the other hand, the spatial proximity of the sulfur to the HB hydrogen provides an opportunity of the intramolecular C–HB???S hydrogen bonding in the s‐cis(S) conformation. Presence of the hydrogen bond critical points as well as ring critical point for corresponding chelate ring revealed by a quantum theory of atoms in molecules (QTAIM) approach confirms the existence of the weak intramolecular C–H???N and C–H???S hydrogen bonding. Therefore, an unusual high‐frequency shift of the HB signal and the increase in the 1J(Cβ,HB) coupling constant can be explained by the effects of hydrogen bonding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号