首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melatonin (MEL) and its chemical precursor N‐acetylserotonin (NAS) are believed to be potential biomarkers for sleep‐related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC‐MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies, and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays, plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1 × 100 mm, 3.5 µm) or on a polyimide‐coated, fused‐silica capillary self‐packed with 17 cm AquaC18 (3 µm, 125 Å). Quantitation was done using the SRM transitions m/z 233 → 174 and m/z 219 → 160 for MEL and NAS, respectively. The analytical response ratio versus concentration curves were linear for MEL (nanoflow LC: 11.7–1165 pg/mL, LC: 1165–116500 pg/mL) and for NAS (nanoflow LC: 11.0–1095 pg/mL). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
We prepared 0.53 and 0.32 mm id monolithic microcolumns by in situ copolymerization of a zwitterionic sulfobetaine functional monomer with bisphenol A glycerolate dimethacrylate (BIGDMA) and dioxyethylene dimetacrylate crosslinkers. The columns show a dual retention mechanism (hydrophilic‐interaction mode) in acetonitrile‐rich mobile phases and RP in highly aqueous mobile phases. The new 0.53 mm id columns provided excellent reproducibility, retention, and separation selectivity for phenolic acids and flavonoids. The new zwitterionic monolithic columns are highly orthogonal, with respect to alkyl silica stationary phases, not only in the hydrophilic‐interaction mode but also in the RP mode. The optimized monolithic zwitterionic microcolumn of 0.53 mm id was employed in the first dimension, either in the aqueous normal‐phase or in the RP mode, coupled with a short nonpolar core‐shell column in the second dimension, for comprehensive 2D LC separations of phenolic and flavonoid compounds. When the 2D setup with the sulfobetaine–BIGDMA column was used for repeated sample analysis, with alternating gradients of decreasing (hydrophilic‐interaction mode), and increasing (RP mode) concentration of acetonitrile on the sulfobetaine–BIGDMA column in the first dimension, useful complementary information on the sample could be obtained.  相似文献   

3.
Non‐heme iron oxygenases contain either monoiron or diiron active sites, and the role of the second iron in the latter enzymes is a topic of particular interest, especially for soluble methane monooxygenase (sMMO). Herein we report the activation of a non‐heme FeIII‐OOH intermediate in a synthetic monoiron system using FeIII(OTf)3 to form a high‐valent oxidant capable of effecting cyclohexane and benzene hydroxylation within seconds at ?40 °C. Our results show that the second iron acts as a Lewis acid to activate the iron–hydroperoxo intermediate, leading to the formation of a powerful FeV=O oxidant—a possible role for the second iron in sMMO.  相似文献   

4.
Characteristics of iron(III) complexes with malic acid in 0.55 mol L?1 NaCl were investigated by voltammetric techniques. Three iron(III)‐malate redox processes were detected in the pH range from 4.5 to 11: first one at ?0.11 V, second at ?0.35 V and third at ?0.60 V. First process was reversible, so stability constants of iron(III) and iron(II) complexes were calculated: log K1(FeIII(mal))=12.66±0.33, log β2(FeIII(mal)2)=15.21±0.25, log K1(FeII(mal))=2.25±0.36, and log β2(FeII(mal)2)=3.18±0.32. In the case of second and third reduction process, conditional cumulative stability constants of the involved complexes were determined using the competition method: log β(Fe(mal)2(OH)x)=15.28±0.10 and log β(Fe(mal)2(OH)y)=27.20±0.09.  相似文献   

5.
A new synthesis of (8‐quinolyl)‐5‐methoxysalicylaldimine (Hqsal‐5‐OMe) is reported and its crystal structure is presented. Two FeIII complexes, [Fe(qsal‐5‐OMe)2]Cl ? solvent (solvent=2 MeOH ? 0.5 H2O ( 1 ) and MeCN ? H2O ( 2 )) have been prepared and their structural, electronic and magnetic properties studied. [Fe(qsal‐5‐OMe)2] Cl ? 2 MeOH ? 0.5 H2O ( 1 ) exhibits rare crystallographically independent high‐spin and low‐spin FeIII centres at 150 K, whereas [Fe(qsal‐5‐OMe)2]Cl ? MeCN ? H2O ( 2 ) is low spin at 100 K. In both structures there are extensive π–π and C? H???π interactions. SQUID magnetometry of 2 reveals an unusual abrupt stepped‐spin crossover with T1/2=245 K and 275 K for steps 1 and 2, respectively, with a slight hysteresis of 5 K in the first step and a plateau of 15 K between the steps. In contrast, 1 is found to undergo an abrupt half‐spin crossover also with a hysteresis of 10 K. The two compounds are the first FeIII complexes of a substituted qsal ligand to exhibit abrupt spin crossover. These conclusions are supported by 57Fe Mössbauer spectroscopy. Both complexes exhibit reversible reduction to FeII at ?0.18 V and irreversible oxidation of the coordinated qsal‐5‐OMe ligand at +1.10 V.  相似文献   

6.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

7.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

8.
A novel amphiphilic silica‐based monolithic column having surface‐bound octanoyl‐aminopropyl moieties was successfully prepared by a one‐step in situ derivatization process. As expected, the amphiphilic monolithic column exhibited RP chromatographic behavior toward non‐polar solutes (e.g., alkyl benzenes) with high column performance. As the pH of the buffer inside the column increases, the EOF changed from −2.65×10−8m2 V−1s−1 at pH 3.0 to 1.20×10−8 m2 V−1s−1 at pH 8.0 with the reversion of EOF at about pH 6.4. Using acidic mobile phase, five aromatic acids can be efficiently separated in less than 6 min under co‐EOF conditions. For basic compounds, symmetrical peaks were obtained due to the existence of hydrophilic acyl amide group, which can effectively minimize the adsorption of the positively charged basic analyte to the silica‐based surface of the capillary column.  相似文献   

9.
It is promising and challenging to manipulate the electronic structures and functions of materials utilizing both metal‐to‐metal charge transfer (MMCT) and spin‐crossover (SCO) to tune the valence and spin states of metal ions. Herein, a metallocyanate building block is used to link with a FeII‐triazole moiety and generates a mixed‐valence complex {[(Tp4‐Me)FeIII(CN)3]9[FeII4(trz‐ph)6]}?[Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 ; trz‐ph=4‐phenyl‐4H‐1,2,4‐triazole). Moreover, MMCT occurs between FeIII and one of the FeII sites after heat treatment, resulting in the generation of a new phase, {[(Tp4‐Me)FeII(CN)3][(Tp4‐Me)FeIII(CN)3]8 [FeIIIFeII3(trz‐ph)6]}? [Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 a ). Structural and magnetic studies reveal that MMCT can tune the two‐step SCO behavior of 1 into one‐step SCO behavior of 1 a . Our work demonstrates that the integration of MMCT and SCO can provide a new alternative for manipulating functional spin‐transition materials with accessible multi‐electronic states.  相似文献   

10.
A bulky bidentate ligand was used to stabilize a macrocyclic [FeIII8CoII6] cluster. Tuning the basicity of the ligand by derivatization with one or two methoxy groups led to the isolation of a homologous [FeIII8CoII6] species and a [FeIII6FeII2CoIII2CoII2] complex, respectively. Lowering the reaction temperatures allowed isolation of [FeIII6FeII2CoIII2CoII2] clusters with all three ligands. Temperature‐dependent absorption data and corresponding experiments with iron/nickel systems indicated that the iron/cobalt self‐assembly process was directed by the occurrence of solution‐state electron‐transfer‐coupled spin transition (ETCST) and its influence on reaction intermediate lability.  相似文献   

11.
A disk‐shaped [FeIII7(Cl)(MeOH)63‐O)3(μ‐OMe)6 (PhCO2)6]Cl2 complex with C3 symmetry has been synthesised and characterised. The central tetrahedral FeIII is 0.733 Å above the almost co‐planar FeIII6 wheel, to which it is connected through three μ3‐oxide bridges. For this iron‐oxo core, the magnetic susceptibility analysis proposed a Heisenberg–Dirac–van Vleck (HDvV) mechanism that leads to an intermediate spin ground state of S=7/2 or 9/2. Within either of these ground state manifolds it is reasonable to expect spin frustration effects. The 57Fe Mössbauer (MS) analysis verifies that the central FeIII ion easily aligns its magnetic moment antiparallel to the externally applied field direction, whereas the other six peripheral FeIII ions keep their moments almost perpendicular to the field at stronger fields. This unusual canted spin structure reflects spin frustration. The small linewidths in the magnetic Mössbauer spectra of polycrystalline samples clearly suggest an isotropic exchange mechanism for realisation of this peculiar spin topology.  相似文献   

12.
A series of newly synthesized 1,3‐purinodiones with potential anticonvulsant activity, exhibiting affinity to adenosine A1 and/or A2A receptors, were subjected to micellar LC (MLC) with SDS as micelle‐forming agent and n‐propanol as organic modifier. Two C18 silica‐based columns were employed in MLC: a particle one and a monolithic. In parallel, those derivatives were also analyzed in RP‐LC on four silica‐based columns and on an immobilized artificial membrane column. The correlations between the relevant logarithms of the retention factors of analytes obtained in MLC, immobilized artificial membrane and RP‐LC systems on the one hand, and the calculated log P (clog P) and log D values (clog D) on the other, were examined. The level of the correlations of retention data from MLC and RP‐LC systems with clog P and clog D obtained is similar but it could be stressed that MLC allows increasing the speed of analysis and using only one mobile phase. Moreover, there is no need of applying an extrapolation procedure in lipophilicity determination. Therefore, the MLC systems, providing chromatographic data in a fast and efficient manner, were demonstrated as promising alternatives to the classical RP‐LC systems to estimate the lipophilicity of drugs and drug candidates.  相似文献   

13.
Simple, isocratic and rapid RP‐HPLC method has been developed for the simultaneous analysis of gemifloxacin and H2‐receptor antagonists i.e. Cimetidine, Famotidine and Ranitidine, in bulk, pharmaceutical formulation and human serum. Separation was achieved on the RP‐Mediterranea column [C18 (250 × 4.6 mm, 5 μ)] at ambient temperature using mobile phase consisting of acetonitrile: methanol: water (20:28:52 v/v/v pH 2.8 adjusted by phosphoric acid). Flow rate was 1.0 mL/min with an average operating pressure of 180 kg/cm2. Gatifloxacin (GATI) was used as an internal standard (IS). Quantitation was achieved with UV detection at 221, 256 and 267 nm, respectively. Linear calibration curves, at concentration ranges of 0.05‐37.5 μgmL‐L with a correlation coefficient of ±0.9994. The detection and quantification limits were in the ranges of 0.023‐0.250 μgmL‐L and 0.071‐0.756 μgmL‐L, respectively. Friedman's and Student's t‐test were applied to correlate these results. Method was validated in terms of selectivity, linearity, precision, robustness, recovery, limits of detection and quantitation and is applicable to the routine analysis of GFX and H2‐receptor antagonists, alone or in combination.  相似文献   

14.
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The use of blood spot collection cards is a simple way to obtain specimens for therapeutic drug monitoring, assessing adherence to medications and preventing toxicity in a clinical setting. A high‐throughput liquid chromatography–electrospray ionization mass spectrometric (LC‐ESI‐MS) method for determination of rifaximin on dried blood spots (DBS) was developed and validated. It involves solvent extraction of a punch of DBS followed by reversed‐phase LC on a monolithic column consisting of a silica rod with bimodal pore structure and detection by ESI‐MS. Rifampicin was used as an internal standard (IS). The run time was within 5.0 min with a very low back‐pressure at a flow rate of 0.5 mL/min. The assay was linear from 0.1 to 10 ng/mL. The mean recovery was 98.42%. The developed method is very simple, rapid and useful for clinical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Hexacoordinated non‐heme iron complexes [FeII(L1)2](ClO4)2 ( 1 ) and [FeII(L2)2](PF6)2 ( 2 ) have been synthesized using ligands L1 = (E)‐2‐chloro‐6‐(2‐(pyridin‐2ylmethylene) hydrazinyl)pyridine and L2 = (E)‐2‐chloro‐6‐(2‐(1‐(pyridin‐2‐yl)ethylidene)hydrazinyl) pyridine]. These complexes are highly active non‐heme iron catalysts to catalyze the C (sp3)?H bonds of alkanes. These iron complexes have been characterized using ESI?MS analysis and molecular structures were determined by X‐ray crystallography. ESI ? MS analysis also helped to understand the generation of intermediate species like FeIII?OOH and FeIV=O. DFT and TD?DFT calculations revealed that the oxidation reactions were performed through high‐valent iron center and a probable reaction mechanism was proposed. These complexes were also utilized for the degradation of orange II and methylene blue dyes.  相似文献   

17.
Iron is an essential element in human development. It is imperative for oxygen and electron transport and also for DNA and neurotransmitters synthesis. On the other hand, this metal is able to participate in Fenton's reaction that in turn leads to free radical damage. The most toxic fraction of iron – nontransferrin‐bound iron and its part desferrioxamine‐chelatable iron – can serve as an exquisite biomarker in the identification of iron imbalance. The goal of the present study was to devise a simple, repeatable, and inexpensive method for the determination of desferrioxamine‐chelatable iron in serum blood samples. The assay procedure is based on desferrioxamine complex formation with iron ions followed to ferrioxamine and its quantitative measurement using RP‐HPLC method. The desferrioxamine‐chelatable iron was extracted from blood by centrifugation and SPE method. Chromatographic separation was performed at 40°C by step‐form gradient elution using Cadenza CD‐C18 column (150 × 4.6 mm id, particle size of 3.0 μm) connected with precolumn for contaminants removal. Gradient HPLC elution has been carried out with solvent A (10 mM Tris‐HCl, pH 5.5) and solvent B (ACN). The flow rate was 1.2 mL/min, and the total separation time was 5 min. The linear quantitation range was 2.5–500 μM (r = 0.9973), and the LOD and LOQ were 0.42 and 1.29 μM, respectively. Proposed HPLC method allowed for the determination of desferrioxamine‐chelatable iron fraction's of nontransferrin‐bound iron, both in the buffer and the serum supplemented with iron ions as well as in the patients’ serum samples with good results of precision and recovery. The developed method found to be sufficiently precise and reproducible for established conditions and after validation and may be used for routine assay of desferrioxamine‐chelatable iron in biological samples.  相似文献   

18.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

19.
An analytical method based on online combination of polymer monolith microextraction (PMME) technique with hydrophilic interaction LC (HILIC)/MS is presented. The extraction was performed with a poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) monolithic column while the subsequent separation was carried out on a Luna silica column by HILIC. After 1:1 v/v dilution with 20 mM phosphate solution at pH 7.0 and centrifugation, urine sample was directly used for extraction. After optimization, 85% ACN (containing 0.3% formic acid v/v) was used for rapid online elution, which was also the mobile phase in HILIC to avoid band broadening during separation or carry‐over that was usually observed in PMME‐RP LC system. Online automation of extraction and separation procedures was realized under the control of a program in this study. The developed method was applied to rapid and sensitive monitoring of three β2‐agonist traces in human urine. The LODs (S/N = 3) of the method were found to be 0.05–0.09 ng/mL of β2‐agonists in urine. The recoveries of three β2‐agonists spiked in five different urine samples ranged from 79.8 to 119.8%, with RSDs less than 18.0%.  相似文献   

20.
A polar polymethacrylate‐based monolithic column was introduced and evaluated as a hydrophilic interaction CEC stationary phase. The monolithic stationary phase was prepared by in situ copolymerization of a neutral monomer 2‐hydroxyethyl methacrylate and a polar cross‐linker N,N′‐methylene bisacrylamide in a binary porogenic solvent consisting of dodecyl alcohol and toluene. The hydroxyl and amino groups at the surface of the monolithic stationary phase provided polar sites which were responsible for hydrophilic interactions. The composition and proportion of the polymerization mixture was investigated in detail. The mechanical stability and reproducibility of the obtained monolithic column preformed was satisfied. The effects of pH and organic solvent content on the EOF and the separation of amines, nucleosides, and narcotics on the optimized monolithic column were investigated. A typical hydrophilic interaction CEC was observed on the neutral polar stationary phase. The optimized monolithic column can obtain high‐column efficiencies with 62 000–126 000 theoretical plates/m and the RSDs of column‐to‐column (n = 9), run‐to‐run (n = 5), and day‐to‐day (n = 3) reproducibility were less than 6.3%. The calibration curves of these five narcotics exhibited good linearity with R in the range of 0.9959–0.9970 and linear ranges of 1.0–200.0 μg/mL. The detection limits at S/N = 3 were between 0.2 and 1.2 μg/mL. The recoveries of the separation of narcotics on the column were in the range of 84.0–108.6%. The good mechanical stability, reproducibility, and quantitation capacity was suitable for pressure‐assisted CEC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号