首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Affinity‐based cell separation is label‐free and highly specific, but it is difficult to efficiently and gently release affinity‐captured cells due to the multivalent nature of cell‐material interactions. To address this challenge, we have developed a platform composed of a capture substrate and a cell‐releasing molecular trigger. The capture substrate is functionalized with a cell‐capture antibody and a coiled‐coil A . The cell‐releasing molecular trigger B ‐PEG (polyethylene glycol), a conjugate of a coiled‐coil B and polyethylene glycol, can drive efficient and gentle release of the captured cells, because A / B heterodimerization brings B ‐PEG to the substrate and PEG chains adopt extended conformations and break nearby multivalent antibody‐biomarker interactions. No enzymes or excessive shear stress are involved, and the released cells have neither external molecules attached nor endogenous cell‐surface molecules cleaved, which is critical for the viability, phenotype, and function of sensitive cells.

  相似文献   


2.
The authors report a method to prepare cell‐laden, cell‐sized microparticles from various materials suitable for individual applications. The method includes a piezoelectric inkjetting technology and a horseradish peroxidase (HRP)‐catalyzed crosslinking reaction. The piezoelectric inkjetting technology enables production of cell‐laden, cell‐sized (20–60 μm) droplets from a polymer aqueous solution. The HRP‐catalyzed crosslinking of the polymer in the ejected solution enables production of spherical microparticles from various materials. Superior cytocompatibility of the microencapsulation method is confirmed from the viability and growth profiles of normal murine mammary gland epithelial cells.

  相似文献   


3.
Cell sorting is important for cell biology and regenerative medicine. A visible light‐responsive cell scaffold is produced using gold nanoparticles and collagen gel. Various kinds of cells are cultured on the visible light‐responsive cell scaffold, and the target cells are selectively detached by photoirradiation without any cytotoxicity. This is a new image‐guided cell sorting system.

  相似文献   


4.
There is a growing interest in modern healthcare to develop systems able to fight antibiotic resistant bacteria. Antimicrobial cationic biodegradable polymers able to mimic antimicrobial peptides have shown to be effective against both Gram‐positive and Gram‐negative bacteria. In these systems, the hydrophilic–hydrophobic ratio and the cationic charge density play a pivotal role in defining the killing efficiency. Nevertheless, many of these antimicrobial polymers show relatively low selectivity as defined by the relative toxicity to mammalian cells or hemolysis relative to pathogens. In this study, a series of polycarbonates containing pendant quaternary ammoniums are used to understand the role of different counter‐anions including chloride, citrate, malonate, benzoate, acetate, lactate and trifluoroacetate, and the antibiotic penicillin on antimicrobial efficacy and selectivity. Interestingly, it is found that in spite of the strong antimicrobial activity of trifluoroacetate and benzoate anions, they prove to be much less hemolytic than chloride anion. It is believed that the proper selection of the anion could enhance the potential of antimicrobial polymers to fight against clinically relevant pathogenic infections, while concurrently mitigating harmful side effects.

  相似文献   


5.
Graphene oxide (GO) has received increasing attention in bioengineering fields due to its unique biophysical and electrical properties, along with excellent biocompatibility. The application of GO nanoparticles (GO‐NPs) to engineer self‐renewal and differentiation of human fetal neural stem cells (hfNSCs) is reported. GO‐NPs added to hfNSC culture during neurosphere formation substantially promote cell‐to‐cell and cell‐to‐matrix interactions in neurospheres. Accordingly, GO‐NP‐treated hfNSCs show enhanced self‐renewal ability and accelerated differentiation compared to untreated cells, indicating the utility of GO in developing stem cell therapies for neurogenesis.

  相似文献   


6.
Antimicrobial polymeric films that are both mechanically robust and function renewable would have broad technological implications for areas ranging from medical safety and bioengineering to foods industry; however, creating such materials has proven extremely challenging. Here, a novel strategy is reported to create high‐strength N‐halamine incorporated poly(vinyl alcohol‐co‐ethylene) films (HAF films) with renewable antimicrobial activity by combining melt radical graft polymerization and reactive extrusion technique. The approach allows here the intrinsically rechargeable N‐halamine moieties to be covalently incorporated into polymeric films with high biocidal activity and durability. The resulting HAF films exhibit integrated properties of robust mechanical strength, high transparency, rechargeable chlorination capability (>300 ppm), and long‐term durability, which can effectively offer 3–5 logs CFU reduction against typical pathogenic bacterium Escherichia coli within a short contact time of 1 h, even at high organism conditions. The successful synthesis of HAF films also provides a versatile platform for exploring the applications of antimicrobial N‐halamine moieties in a self‐supporting, structurally adaptive, and function renewable form.

  相似文献   


7.
The strand material in extrusion‐based bioprinting determines the microenvironments of the embedded cells and the initial mechanical properties of the constructs. One unmet challenge is the combination of optimal biological and mechanical properties in bioprinted constructs. Here, a novel bioprinting method that utilizes core–shell cell‐laden strands with a mechanically robust shell and an extracellular matrix‐like core has been developed. Cells encapsulated in the strands demonstrate high cell viability and tissue‐like functions during cultivation. This process of bioprinting using core–shell strands with optimal biochemical and biomechanical properties represents a new strategy for fabricating functional human tissues and organs.

  相似文献   


8.
Hybrid Pt(platinum)/carbon nanopatterns with an extremely low loading level of Pt catalysts derived from block copolymer templates as an alternative type of counter electrodes (CEs) in dye‐sensitized solar cells (DSSCs) are proposed. DSSCs employing hybrid Pt/carbon with tailored configuration as CEs exhibit higher short‐circuit current and conversion efficiencies as well as stability with a lapse of time compared with conventional cells on the basis of sputtered Pt thin films, evidencing that the new class of hybrid nanostructures possess high potential for cost‐effective electrodes in energy conversion devices.

  相似文献   


9.
Photoactive materials are actively researched, piloting breakthroughs that have enriched fundamental understanding of science, and have led to real applications. Tetraphenylethene, a photoactive molecule that is of interest from fundamental and applied perspectives, features photochemical properties that are not exploited in the design of photoactive, dual‐emissive materials. Here, tetraphenylethene‐based, dual‐emissive dendrimers are constructed via a synthetic approach that involves a photochemical reaction that exploits the photochemistry of tetraphenylethene. These dendrimers are emissive in solution and in the aggregate state with tunable dual emissions at 368 and 469 nm. The photochemical reaction also tunes the size of the aggregates, increasing the size after UV irradiation. The reported synthetic strategy is a direct and facile approach to accessing dual‐emissive macromolecules, especially tetraphenylethene‐based systems for real applications.

  相似文献   


10.
Tuning the chain‐end functionality of a short‐chain cationic homopolymer, owing to the nature of the initiator used in the atom transfer radical polymerization (ATRP) polymerization step, can be used to mediate the formation of a gel of this poly(electrolyte) in water. While a neutral end group gives a solution of low viscosity, a highly homogeneous gel is obtained with a phosphonate anionic moiety, as characterized by rheometry and diffusion nuclear magnetic resonance (NMR). This novel type of supramolecular control over poly(electrolytic) gel formation could find potential use in a variety of applications in the field of electro‐active materials.

  相似文献   


11.
Various potential anti‐infection strategies can be thought of for biomaterial implants and devices. Permanent, tissue‐integrated implants such as artificial joint prostheses require a different anti‐infection strategy than, for instance, removable urinary catheters. The different requirements set to biomaterials implants and devices in different clinical applications call for tailor‐made strategies. Here, a modular coating‐concept for biomaterials is reported, which in its full, trifunctional form comprises nonadhesiveness to bacteria and antimicrobial release, combined with enhanced tissue integration characteristics. Nonadhesiveness to proteins and bacteria is accomplished by a hydrophilic brush coating (Vitrostealth). The antimicrobial release module is constituted by a chlorhexidine releasing poly(ethylene glycol) diacrylamide based‐coating that continues to release its antimicrobial content also when underneath the nonadhesive top‐coating. The third module, enhancing tissue integration, is realized by the incorporation of the penta‐peptide Glycine‐Arginine‐Glycine‐Aspartic acid‐Serine (GRGDS) within the nonadhesive top‐coating. Modules function in concert or independently of each other. Specifically, tissue integration by the GRGDS‐module does not affect the nonadhesiveness of the Vitrostealth‐module toward bovine serum albumin and Staphylococcus aureus , while the antimicrobial release module does not affect tissue‐integration by the GRGDS‐module. Uniquely, using this modular system, tailor‐made anti‐infection strategies can thus readily be made for biomaterials in different clinical applications.

  相似文献   


12.
A nanoassembled drug delivery system for anticancer treatment, formed by the host–guest interactions between paclitaxel (PTX) and β‐cyclodextrin (β‐CD) modified poly(acrylic acid) (PCDAA), is successfully prepared. After such design, the aqueous solubility of PTX is greatly increased from 0.34 to 36.02 μg mL?1, and the obtained PCDAA‐PTX nanoparticles (PCDAA‐PTX NPs) exhibit a sustained PTX release behavior in vitro. In vitro cytotoxicity finds that PCDAA‐PTX NPs can accumulate significantly in tumor cells and remain the pharmacological activity of PTX. The in vivo real‐time biodistribution of PCDAA‐PTX NPs is investigated using near‐infrared fluorescence imaging, indicating that the PCDAA‐PTX NPs can effectively target to the tumor site by the enhanced permeability and retention effect in H22 tumor‐bearing mice. Through in vivo antitumor examination, PCDAA‐PTX NPs exhibit superior efficacy in impeding the tumor growth compared to the commercially available Taxol®.

  相似文献   


13.
Aggregation‐caused quenching (ACQ) is a general phenomenon that is faced by traditional fluorescent polymers. Aggregation‐induced emission (AIE) is exactly opposite to ACQ. AIE molecules are almost nonemissive in their molecularly dissolved state, but they can be induced to show high fluorescence in the aggregated or solid state. Incorporation of AIE phenomenon into polymer design has yielded various polymers with AIE characteristics. In this review, the recent progress of AIE polymers for biological applications is summarized.

  相似文献   


14.
Amphiphilic triblock copolymers mPEG‐b‐PMAC‐b‐PCL are synthesized using methoxyl poly(ethylene glycol), cyclic carbonic ester monomer including acryloyl group, and ε‐caprolactone. Copolymers are self‐assembled into core–shell micelles in aqueous solution. Thiolated hemoglobin (Hb) is conjugated with micelles sufficiently through thiol Michael addition reaction to form hemoglobin nanoparticles (HbNs) with 200 nm in diameter. The conjugation of Hb onto the micelle surface is further confirmed by X‐ray photoelectron spectroscopy. Feeding ratio of copolymer micelles to Hb at 1:3 would lead to the highest hemoglobin loading efficiency 36.7 wt%. The UV results demonstrate that the gas transporting capacity of HbNs is well remained after Hb is conjugated with polymeric micelles. Furthermore, the obtained HbNs have no obvious detrimental effects on blood components in vitro. This system may thus have great potential as one of the candidates to be developed as oxygen carriers and provide a reference for the modification of protein drugs.

  相似文献   


15.
The present study delves into a combined bio‐nano‐macromolecular approach for bone tissue engineering. This approach relies on the properties of an ideal scaffold material imbued with all the chemical premises required for fostering cellular growth and differentiation. A tannic acid based water dispersible hyperbranched polyurethane is fabricated with bio‐nanohybrids of carbon dot and four different peptides (viz. SVVYGLR, PRGDSGYRGDS, IPP, and CGGKVGKACCVPTKLSPISVLYK) to impart target specific in vivo bone healing ability. This polymeric bio‐nanocomposite is blended with 10 wt% of gelatin and examined as a non‐invasive delivery vehicle. In vitro assessment of the developed polymeric system reveals good osteoblast adhesion, proliferation, and differentiation. Aided by this panel of peptides, the polymeric bio‐nanocomposite exhibits in vivo ectopic bone formation ability. The study on in vivo mineralization and vascularization reveals the occurrence of calcification and blood vessel formation. Thus, the study demonstrates carbon dot/peptide functionalized hyperbranched polyurethane gel for bone tissue engineering application.

  相似文献   


16.
Multivalent aptamer–siRNA conjugates containing multiple mucin‐1 aptamers and BCL2‐specific siRNA are synthesized, and doxorubicin, an anthracycline anticancer drug, is loaded into these conjugates through intercalation with nucleic acids. These doxorubicin‐incorporated multivalent aptamer–siRNA conjugates are transfected to mucin‐1 overexpressing MCF‐7 breast cancer cells and their multidrug‐resistant cell lines. Doxorubicin‐incorporated multivalent aptamer–siRNA conjugates exert promising anticancer effects, such as activation of caspase‐3/7 and decrease of cell viability, on multidrug‐resistant cancer cells because of their high intracellular uptake efficiency. Thus, this delivery system is an efficient tool for combination oncotherapy with chemotherapeutics and nucleic acid drugs to overcome multidrug resistance.

  相似文献   


17.
This article reports the behavior of embryonic neural stem cells on a hydrogel that combines cationic, non‐specific cell adhesion motifs with glycine‐arginine‐glycine‐aspartic acid‐serine‐phenylalanine (GRGDSF)‐peptides as specific cell adhesion moieties. Therefore, three hydrogels are prepared by free radical polymerization that contains either a GRGDSF‐peptide residue ( P1 ), amino ethylmethacrylate as a cationic residue ( P2 ), or a combination of both motifs ( P3 ). For each gel, cross linker concentrations of 8 mol% is used to have a comparable gel stiffness of 8–9 kPa. The cell experiments indicate a synergistic effect of the non‐specific, cationic residues, and the specific GRGDSF‐peptides on embryonic neural stem cell behavior that is especially pronounced in the cell adhesion experiments by more than doubling the number of cells after 72 h when comparing P3 with P2 and is less pronounced in the proliferation and differentiation experiments.

  相似文献   


18.
Although chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western world, it remains incurable with conventional chemotherapeutic agents. Tumor necrosis factor (TNF)‐related apoptosis‐inducing ligand (TRAIL) is an antitumor candidate in cancer therapy. This study examines the proapoptotic effects of poly(propylene imine) (PPI) glycodendrimers modified with the maltotriose residues (PPI‐G4‐OS‐Mal‐III and PPI‐G4‐DS‐Mal‐III) on the TNF family in CLL cells. The combination of an understanding of the signaling pathways associated with CLL and the development of a molecular profiling is a key issue for the design of personalized approaches to therapy. Gene expression is determined with two‐color microarray 8 × 60K. The findings indicate that PPI‐G4‐OS/DS‐Mal‐III affect gene expression from the TRAIL apoptotic pathway and exert a strong effect on CLL cells comparable with fludarabine. Dendrimer‐targeted technology may well prove to bridge the gap between the ineffective treatment of today and the effective personalized therapy of the future.

  相似文献   


19.
This article summarizes recent progress in the post‐functionalization of conjugated polymers by electrochemical methods. These electrochemical polymer reactions typically proceed via electrochemical doping of a conjugated polymer film, followed by chemical transformation. Examples include the quantitative oxidative fluorination of polyfluorenes and oxidative halogenation of polythiophenes, as well as the reductive hydrogenation of polyfluorenones. The degree of functionalization, otherwise known as the reaction ratio, can be controlled by varying the charge passed through the polymer, allowing the optoelectronic properties of the conjugated polymers to be tailored. Wireless bipolar electrodes with an in‐plane potential distribution are also useful with regard to the electrochemical doping and reaction of conjugated polymers and allow the synthesis of films exhibiting composition gradients. Such bipolar electrochemistry can induce multiple reaction sites during electrochemical polymer reactions.

  相似文献   


20.
The high affinity of GLUT5 transporter for d ‐fructose in breast cancer cells has been discussed intensely. In this contribution, high molar mass linear poly(ethylene imine) (LPEI) is functionalized with d ‐fructose moieties to combine the selectivity for the GLUT5 transporter with the delivery potential of PEI for genetic material. The four‐step synthesis of a thiol‐group bearing d ‐fructose enables the decoration of a cationic polymer backbone with d ‐fructose via thiol‐ene photoaddition. The functionalization of LPEI is confirmed by 2D NMR techniques, elemental analysis, and size exclusion chromatography. Importantly, a d ‐fructose decoration of 16% renders the polymers water‐soluble and eliminates the cytotoxicity of PEI in noncancer L929 cells, accompanied by a reduced unspecific cellular uptake of the genetic material. In contrast, the cytotoxicity as well as the cell specific uptake is increased for triple negative MDA‐MB‐231 breast cancer cells. Therefore, the introduction of d ‐fructose shows superior potential for cell targeting, which can be assumed to be GLUT5 dependent.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号