首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell sorting is important for cell biology and regenerative medicine. A visible light‐responsive cell scaffold is produced using gold nanoparticles and collagen gel. Various kinds of cells are cultured on the visible light‐responsive cell scaffold, and the target cells are selectively detached by photoirradiation without any cytotoxicity. This is a new image‐guided cell sorting system.

  相似文献   


2.
The strand material in extrusion‐based bioprinting determines the microenvironments of the embedded cells and the initial mechanical properties of the constructs. One unmet challenge is the combination of optimal biological and mechanical properties in bioprinted constructs. Here, a novel bioprinting method that utilizes core–shell cell‐laden strands with a mechanically robust shell and an extracellular matrix‐like core has been developed. Cells encapsulated in the strands demonstrate high cell viability and tissue‐like functions during cultivation. This process of bioprinting using core–shell strands with optimal biochemical and biomechanical properties represents a new strategy for fabricating functional human tissues and organs.

  相似文献   


3.
Electrospinning is here used for the first time to prepare nanofibers including a host/guest complex in a keratin/poly(ethylene oxide) matrix. The host is a lipid binding protein and the guest is an insoluble bactericidal molecule, irgasan, bound within the protein internal cavity. The obtained nanofibers, characterized by scanning electron microscopy, exhibit excellent antibacterial activity toward Gram positive and negative bacteria, even with a moderate protein/irgasan cargo. Solution NMR studies, employed to provide molecular information on the cargo system, points to a micromolar affinity, compatible with both the electrospinning process and slow guest release. The versatility of the carrier protein, capable of interacting with a variety of druggable hydrophobic molecules, is exploitable for the development of innovative biomedical devices, whose properties can be tuned by the selected guest.

  相似文献   


4.
Novel biodegradable polymers with specific properties, structures, and tailorable designs or modifications are in great demand. Poly(phosphoester)s with good biocompatibility and degradability, as well as other adjustable properties have been studied widely because of their potential in biomedical applications. To meet more versatile and diverse biomedical applications, a novel multiarm star‐shaped phosphorester triblock copolymer poly(amido amine)‐block‐poly(2‐butynyl phospholane)‐block‐poly(2‐methoxy phospholane) (PAMAM‐PBYP‐PMP) is synthesized via organo‐catalyzed sequential ring‐opening polymerization. Supramolecular micelles with good architectural stability are self‐assembled into uniform spherical morphology in aqueous solution. Doxorubicin (DOX) can be encapsulated into the micelles with efficient loading capacity. A slow and sustained release in the environment of simulated intracellular lysosome (pH 5.0 with phosphodiesterase I) is observed. In addition, the copolymers and DOX‐loaded supramolecular micelles exhibit low cell‐toxicity and excellent anticancer activity toward HeLa cells. As a consequence, this multiarm star‐shaped PAMAM‐PBYP‐PMP has great potential in drug delivery system for tumor treatment.

  相似文献   


5.
Aggregation‐caused quenching (ACQ) is a general phenomenon that is faced by traditional fluorescent polymers. Aggregation‐induced emission (AIE) is exactly opposite to ACQ. AIE molecules are almost nonemissive in their molecularly dissolved state, but they can be induced to show high fluorescence in the aggregated or solid state. Incorporation of AIE phenomenon into polymer design has yielded various polymers with AIE characteristics. In this review, the recent progress of AIE polymers for biological applications is summarized.

  相似文献   


6.
Multivalent aptamer–siRNA conjugates containing multiple mucin‐1 aptamers and BCL2‐specific siRNA are synthesized, and doxorubicin, an anthracycline anticancer drug, is loaded into these conjugates through intercalation with nucleic acids. These doxorubicin‐incorporated multivalent aptamer–siRNA conjugates are transfected to mucin‐1 overexpressing MCF‐7 breast cancer cells and their multidrug‐resistant cell lines. Doxorubicin‐incorporated multivalent aptamer–siRNA conjugates exert promising anticancer effects, such as activation of caspase‐3/7 and decrease of cell viability, on multidrug‐resistant cancer cells because of their high intracellular uptake efficiency. Thus, this delivery system is an efficient tool for combination oncotherapy with chemotherapeutics and nucleic acid drugs to overcome multidrug resistance.

  相似文献   


7.
How to overcome the low accumulation of chemotherapeutic agent in tumor tissue and exhibit multitherapeutics remains an ongoing challenge for cancer treatment. Here, a simple method is demonstrated that used to prepare prostate‐specific membrane antigen antibody (PSMAab)‐conjugated fluorescent bovine serum albumin (BSA)‐branched polyethylenimine layer‐by‐layer nanoparticles (BSA‐PEILBL NPs) for co‐delivery of docetaxel (DTX) and p44/42 mitogen‐activated protein kinase (MAPK) small interfering RNA (p44/42 MAPK siRNA) as synergistic and selective inhibition of cancer cell proliferation platform. The results show the levels of α‐tubulin and p44/42 MAPK in CWR22R cells are significantly reduced after treatment with PSMAab‐conjugated DTX/BSA‐PEILBL/siRNA NPs. Consequently, the 50% cellular growth inhibition (IC50) values of the NPs loaded with both DTX and p44/42 MAPK siRNA are ≈2.1‐fold less than those for the NPs only loaded with DTX. The median survival significantly prolongs from 18 d to upward 45 d compared to mice that receive same dose (12 mg kg−1) of free DTX. The results suggest this synergistic delivery system may be a promising clinical treatment in prostate cancer.

  相似文献   


8.
Functionalizing polymer scaffolds with nanodiamond particles (nDPs) has pronounced effect on the surface properties, such as improved wettability, an increased active area and binding sites for cellular attachment and adhesion, and increased ability to immobilize biomolecules by physical adsorption. This study aims to evaluate the effect of poly(l ‐lactide‐co‐ε‐caprolactone) (poly(LLA‐co‐CL)) scaffolds, functionalized with nDPs, on bone regeneration in a rat calvarial critical size defect. Poly(LLA‐co‐CL) scaffolds functionalized with nDPs are also compared with pristine scaffolds with reference to albumin adsorption and seeding efficiency of bone marrow stromal cells (BMSCs). Compared with pristine scaffolds, the experimental scaffolds exhibit a reduction in albumin adsorption and a significant increase in the seeding efficiency of BMSCs (p = 0.027). In the calvarial defects implanted with BMSC‐seeded poly(LLA‐co‐CL)/nDPs scaffolds, live imaging at 12 weeks discloses a significant increase in osteogenic metabolic activity (p = 0.016). Microcomputed tomography, confirmed by histological data, reveals a substantial increase in bone volume (p = 0.021). The results show that compared with conventional poly(LLA‐co‐CL) scaffolds those functionalized with nDPs promote osteogenic metabolic activity and mineralization capacity. It is concluded that poly(LLA‐co‐CL) composite matrices functionalized with nDPs enhance osteoconductivity and therefore warrant further study as potential scaffolding material for bone tissue engineering.

  相似文献   


9.
The ability to tune supramolecular properties such as size, morphology, or metabolic stability is of paramount importance in the field of supramolecular chemistry. Peptide amphiphiles (PAs) are a family of functional self‐assembling biomaterials that have garnered widespread attention due to their broad applicability in medicine. PAs are generally comprised of an amino acid sequence connected to lipid tail(s) allowing them to self‐assemble into supramolecular structures with diverse morphologies. Herein, this study describes the synthesis of a new class of polyamine‐based “hybrid” PAs (PPAs) as novel self‐assembling systems. The described molecules possess diverse polyamine head groups with the goal of tuning physicochemical properties. The findings indicate that small changes in the polyamine head groups result in altered PPA morphologies (nanofibers, micelles, nanoworms). The PPAs present a wide range of physicochemical characteristics, show superior resistance to aggregation, a diverse metabolic profile, and varied assembling kinetics. Most of the PPAs do not show toxicity in the human cells lines evaluated. The PPAs described herein hold promising potential as a safe and nontoxic option for drug delivery, targeting, and tissue engineering applications.

  相似文献   


10.
This study describes the development and cell culture application of nanometer thick photocrosslinkable thermoresponsive polymer films prepared by physical adsorption. Two thermoresponsive polymers, poly(N‐isopropylacrylamide (NIPAm)‐co‐acrylamidebenzophenone (AcBzPh)) and poly(NIPAm‐co‐AcBzPh‐co‐N‐tertbutylacrylamide) are investigated. Films are prepared both above and below the polymers' lower critical solution temperatures (LCSTs) and cross‐linked, to determine the effect, adsorption preparation temperature has on the resultant film. The films prepared at temperatures below the LCST are smoother, thinner, and more hydrophilic than those prepared above. Human pulmonary microvascular endothelial cell (HPMEC) adhesion and proliferation are superior on the films produced below the polymers LCST compared to those produced above. Cells sheets are detached by simply lowering the ambient temperature to below the LCST. Transmission electron, scanning electron, and light microscopies indicate that the detached HPMEC sheets maintain their integrity.

  相似文献   


11.
This article reports a rational strategy for preparing smart oligo(ethylene glycol)‐based hybrid microgels loaded with high content of homogeneously distributed preformed magnetic nanoparticles (NPs) (up to 33 wt%). The strategy is based on the synthesis of biocompatible multiresponsive microgels by precipitation copolymerization of di(ethylene glycol) methyl ether methacrylate, oligo(ethylene glycol) methyl ether methacrylate, methacrylic acid, and oligo(ethylene glycol)diac­rylate. An aqueous dispersion of preformed magnetic NPs is straightforwardly loaded into the microgels. Robust monodisperse thermoresponsive magnetic microgels are produced, exhibiting a constant value of the volume phase transition temperature whatever the NPs content. The homogeneous microstructure of the initial stimuli‐responsive biocompatible microgels plays a crucial role for the design of unique well‐defined ethylene glycol‐based thermoresponsive hybrid microgels.

  相似文献   


12.
A novel PEGylation polypeptide, poly(ethylene glycol)‐b‐poly(l ‐lysine)‐b‐poly(l ‐cysteine) (PEG‐PLL‐PCys) triblock copolymer is synthesized via the sequential ring‐opening polymerization of amino acid N‐carboxyanhydrides initiated by methoxypolyethylene glycol amine (mPEG‐NH2, M w is 2 kDa). Subsequently, the obtained polypeptide is partially conjugated with fluorocarbon chains via disulfide exchange reaction. PLL segment can condense plasmid DNA through an electrostatic force to form a complex core, PEG segment surrounding the complex like a corona can prevent the complex from precipitation and reduce the adsorption of serum, while PCys segment with fluorocarbon can enhance the cellular uptake and the stability of the formed polyplex micelles in physiological conditions. Experiment results exhibit that the fluorinated polypeptides have low cytotoxicity and good gene transfection efficiency even in the presence of 50% fetal bovine serum.

  相似文献   


13.
The fabrication of nanodiamond (ND)‐based drug carriers for tumor‐targeted drug delivery is described. The ND clusters with an average size of 52.84 nm are fabricated using a simple fluidic device combined with a precipitation method and then conjugated with folic acid (FA) and doxorubicin (Dox) via carbodiimide chemistry to obtain FA/Dox‐modified ND (FA/Dox‐ND) clusters. Cell culture experiments revealed that KB (folate receptor‐positive) cells are preferentially ablated by FA/Dox‐ND clusters compared to A549 (folate receptor‐negative) cells. In vivo results revealed that FA/Dox‐ND clusters are specifically accumulated in tumor tissues after intravenous injection into tumor‐bearing mice, effectively reducing the volume of tumor. Based on these results, this study suggests that FA/Dox‐ND clusters can be a good candidate as tumor‐targeted nanovehicles for delivery of antitumor drug.

  相似文献   


14.
A DOX‐loaded polysaccharide‐lecithin reverse micelles triglyceride‐based oral delivery nanocarrier (D‐PL/TG NPs) conjugated with (i) RGD peptide for targeting to β1 integrin of M cells and (ii) Lyp‐1 peptide for targeting to the p32 receptor of MDA‐MB‐231 cells is used to investigate the multistage continuous targeting capabilities of these peptide‐conjugated nanocarriers (GLD‐PL/TG NPs) for tumor therapy. Variations in the targeting efficacy and pharmacokinetic properties are investigated by quantitatively controlling the surface density of different peptides on the nanoparticles. In vitro permeability in a human follicle‐associated epithelium model and cytotoxicity against MDA‐MB‐231 cells indicate that the nanocarriers conjugated with high RGD peptide concentrations display a higher permeability due to the existence of M cells with higher transcytosis activity, but a higher concentration of conjugated Lyp‐1 peptide exhibits the lowest cell viability. Being benefited from specific targeting of peptide conjugation, improved bioavailability and enhanced tumor accumulation are achieved by the GLD‐PL/TG NPs, leading to better antitumor efficacy. The results of in vivo biodistribution and antitumor studies reveal that the effect of LyP‐1 peptide is more predominant than that of RGD peptide. This proof of multistage continuous targeting may open the door to a new generation of oral drug delivery systems in targeted cancer therapy.

  相似文献   


15.
In this study, heparin‐mimicking hydrogel thin films are covalently attached onto poly(ether sulfone) membrane surfaces to improve anticoagulant property. The hydrogel films display honeycomb‐like porous structure with well controlled thickness and show long‐term stability. After immobilizing the hydrogel films, the membranes show excellent anticoagulant property confirmed by the activated partial thromboplastin time values exceeding 600 s. Meanwhile, the thrombin time values increase from 20 to 61 s as the sodium allysulfonate proportions increase from 0 to 80 mol%. In vitro investigations of protein adsorption and blood‐related complement activation also confirm that the membranes exhibit super‐anticoagulant property. Furthermore, gentamycin sulfate is loaded into the hydrogel films, and the released drug shows significant inhibition toward E. coli bacteria. It is believed that the surface attached heparin‐mimicking hydrogel thin films may show high potential for the applications in various biological fields, such as blood contacting materials and drug loading materials.

  相似文献   


16.
A polyzwitterion is synthesized by regioselective functionalization of cellulose possessing a uniform charge distribution. The positively charged ammonium group is present at position 6, while the negative charge of carboxylate is located at positions 2 and 3 of the repeating unit. The molecular structure of the biopolymer derivative is proved by NMR spectroscopy. This cellulose‐based zwitterion is applied to several support materials by spin‐coating and characterized by means of atomic force microscope, contact angle measurements, ellipsometry, and X‐ray photoelectron spectroscopy. The coatings possess antimicrobial activity depending on the support materials (glass, titanium, tissue culture poly(styrene)) as revealed by confocal laser scanning microscopy and live/dead staining.

  相似文献   


17.
Affinity‐based cell separation is label‐free and highly specific, but it is difficult to efficiently and gently release affinity‐captured cells due to the multivalent nature of cell‐material interactions. To address this challenge, we have developed a platform composed of a capture substrate and a cell‐releasing molecular trigger. The capture substrate is functionalized with a cell‐capture antibody and a coiled‐coil A . The cell‐releasing molecular trigger B ‐PEG (polyethylene glycol), a conjugate of a coiled‐coil B and polyethylene glycol, can drive efficient and gentle release of the captured cells, because A / B heterodimerization brings B ‐PEG to the substrate and PEG chains adopt extended conformations and break nearby multivalent antibody‐biomarker interactions. No enzymes or excessive shear stress are involved, and the released cells have neither external molecules attached nor endogenous cell‐surface molecules cleaved, which is critical for the viability, phenotype, and function of sensitive cells.

  相似文献   


18.
Stem cell transplantations for spinal cord injury (SCI) have been studied extensively for the past decade in order to replace the damaged tissue with human pluripotent stem cell (hPSC)‐derived neural cells. Transplanted cells may, however, benefit from supporting and guiding structures or scaffolds in order to remain viable and integrate into the host tissue. Biomaterials can be used as supporting scaffolds, as they mimic the characteristics of the natural cellular environment. In this study, hPSC‐derived neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) are cultured on aligned poly(ε‐caprolactone) nanofiber platforms, which guide cell orientation to resemble that of spinal cord in vivo. All cell types are shown to efficiently spread over the nanofiber platform and orient according to the fiber alignment. Human neurons and astrocytes require extracellular matrix molecule coating for the nanofibers, but OPCs grow on nanofibers without additional treatment. Furthermore, the nanofiber platform is combined with a 3D hydrogel scaffold with controlled thickness, and nanofiber‐mediated orientation of hPSC‐derived neurons is also demonstrated in a 3D environment. In this work, clinically relevant materials and substrates for nanofibers, fiber coatings, and hydrogel scaffolds are used and combined with cells suitable for developing functional cell grafts for SCI repair.

  相似文献   


19.
Graphene oxide (GO) has received increasing attention in bioengineering fields due to its unique biophysical and electrical properties, along with excellent biocompatibility. The application of GO nanoparticles (GO‐NPs) to engineer self‐renewal and differentiation of human fetal neural stem cells (hfNSCs) is reported. GO‐NPs added to hfNSC culture during neurosphere formation substantially promote cell‐to‐cell and cell‐to‐matrix interactions in neurospheres. Accordingly, GO‐NP‐treated hfNSCs show enhanced self‐renewal ability and accelerated differentiation compared to untreated cells, indicating the utility of GO in developing stem cell therapies for neurogenesis.

  相似文献   


20.
The phase behavior of a dendritic amphiphile containing a Newkome‐type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air–liquid interface. The amphiphile forms stable monomolecular films at the air–liquid interface on different subphases. Furthermore, the mineralization of calcium phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High‐resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano‐needles aggregate into larger flake‐like objects.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号