首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 992 毫秒
1.
A mesh-independent and second-order accurate multigrid strategy to solve control-constrained parabolic optimal control problems is presented. The resulting algorithms appear to be robust with respect to change of values of the control parameters and have the ability to accommodate constraints on the control also in the limit case of bang-bang control. Central to the development of these multigrid schemes is the design of iterative smoothers which can be formulated as local semismooth Newton methods. The design of distributed controls is considered to drive nonlinear parabolic models to follow optimally a given trajectory or attain a final configuration. In both cases, results of numerical experiments and theoretical twogrid local Fourier analysis estimates demonstrate that the proposed schemes are able to solve parabolic optimality systems with textbook multigrid efficiency. Further results are presented to validate second-order accuracy and the possibility to track a trajectory over long time intervals by means of a receding-horizon approach.  相似文献   

2.
A finite-element multigrid scheme for elliptic Nash-equilibrium multiobjective optimal control problems with control constraints is investigated. The multigrid computational framework implements a nonlinear multigrid strategy with collective smoothing for solving the multiobjective optimality system discretized with finite elements. Error estimates for the optimal solution and two-grid local Fourier analysis of the multigrid scheme are presented. Results of numerical experiments are presented to demonstrate the effectiveness of the proposed framework.  相似文献   

3.
We are concerned with the semilinear elliptic problems. We first investigate the L2-error estimate for the lumped mass finite element method. We then use the cascadic multigrid method to solve the corresponding discrete problem. On the basis of the finite element error estimates, we prove the optimality of the proposed multigrid method. We also report some numerical results to support the theory.  相似文献   

4.
We present a smooth, that is, differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We summarize the optimality conditions in function spaces for unconstrained and control-constrained problems subject to a class of parabolic partial differential equations. The optimality conditions are then given by coupled systems of parabolic PDEs. For constrained problems, a non-smooth projection operator occurs in the optimality conditions. For this projection operator, we present in detail a regularization method based on smoothed sign, minimum and maximum functions. For all three cases, that is, (1) the unconstrained problem, (2) the constrained problem including the projection, and (3) the regularized projection, we verify that the optimality conditions can be equivalently expressed by an elliptic boundary value problem in the space-time domain. For this problem and all three cases we discuss existence and uniqueness issues. Motivated by this elliptic problem, we use a simultaneous space-time discretization for numerical tests. Here, we show how a standard finite element software environment allows to solve the problem and, thus, to verify the applicability of this approach without much implementation effort. We present numerical results for an example problem.  相似文献   

5.
In this paper, we study numerical methods for an optimal control problem with pointwise state constraints. The traditional approaches often need to deal with the deltasingularity in the dual equation, which causes many difficulties in its theoretical analysis and numerical approximation. In our new approach we reformulate the state-constrained optimal control as a constrained minimization problems only involving the state, whose optimality condition is characterized by a fourth order elliptic variational inequality. Then direct numerical algorithms (nonconforming finite element approximation) are proposed for the inequality, and error estimates of the finite element approximation are derived. Numerical experiments illustrate the effectiveness of the new approach.  相似文献   

6.
Image registration is a central problem in a variety of areas involving imaging techniques and is known to be challenging and ill‐posed. Regularization functionals based on hyperelasticity provide a powerful mechanism for limiting the ill‐posedness. A key feature of hyperelastic image registration approaches is their ability to model large deformations while guaranteeing their invertibility, which is crucial in many applications. To ensure that numerical solutions satisfy this requirement, we discretize the variational problem using piecewise linear finite elements, and then solve the discrete optimization problem using the Gauss–Newton method. In this work, we focus on computational challenges arising in approximately solving the Hessian system. We show that the Hessian is a discretization of a strongly coupled system of partial differential equations whose coefficients can be severely inhomogeneous. Motivated by a local Fourier analysis, we stabilize the system by thresholding the coefficients. We propose a Galerkin‐multigrid scheme with a collective pointwise smoother. We demonstrate the accuracy and effectiveness of the proposed scheme, first on a two‐dimensional problem of a moderate size and then on a large‐scale real‐world application with almost 9 million degrees of freedom.  相似文献   

7.
Multigrid methods for a parameter dependent problem in primal variables   总被引:1,自引:0,他引:1  
Summary. In this paper we consider multigrid methods for the parameter dependent problem of nearly incompressible materials. We construct and analyze multilevel-projection algorithms, which can be applied to the mixed as well as to the equivalent, non-conforming finite element scheme in primal variables. For proper norms, we prove that the smoothing property and the approximation property hold with constants that are independent of the small parameter. Thus we obtain robust and optimal convergence rates for the W-cycle and the variable V-cycle multigrid methods. The numerical results pretty well conform the robustness and optimality of the multigrid methods proposed. Received June 17, 1998 / Revised version received October 26, 1998 / Published online September 7, 1999  相似文献   

8.
High(-mixed)-order finite difference discretization of optimality systems arising from elliptic nonlinear constrained optimal control problems are discussed. For the solution of these systems, an efficient and robust multigrid algorithm is presented. Theoretical and experimental results show the advantages of higher-order discretization and demonstrate that the proposed multigrid scheme is able to solve efficiently constrained optimal control problems also in the limit case of bang-bang control.  相似文献   

9.
谷伟  许文涛 《经济数学》2012,29(4):20-25
期权定价问题可以转化为对倒向随机微分方程的求解,进而转化为对相应抛物型偏微分方程的求解.为了求解与倒向随机微分方程相应的二阶拟线性抛物型微分方程初值问题,引入一类新的随机算法-分层方法取代传统的确定性数值算法.这种数值方法理论上是通过弱显式欧拉法,离散其相应随机系统解的概率表示而得到.该随机算法的收敛性在文中得到证明,其稳定性是自然的.并构造了易于数值实现的基于插值的算法,实证研究说明这种算法能很好地提供期权定价模型的数值模拟.  相似文献   

10.
In this paper,the monolithic multigrid method is investigated for reduced magnetohydrodynamic equations.We propose a diagonal Braess-Sarazin smoother for the finite element discrete system and prove the uniform convergence of the MMG method with respect to mesh sizes.A multigrid-preconditioned FGMRES method is proposed to solve the magnetohydrodynamic equations.It turns out to be robust for relatively large physical parameters.By extensive numerical experiments,we demonstrate the optimality of the monolithic multigrid method with respect to the number of degrees of freedom.  相似文献   

11.
A new numerical algorithm based on multigrid methods is proposed for solving equations of the parabolic type. Theoretical error estimates are obtained for the algorithm as applied to a two-dimensional initial-boundary value model problem for the heat equation. The good accuracy of the algorithm is demonstrated using model problems including ones with discontinuous coefficients. As applied to initial-boundary value problems for diffusion equations, the algorithm yields considerable savings in computational work compared to implicit schemes on fine grids or explicit schemes with a small time step on fine grids. A parallelization scheme is given for the algorithm.  相似文献   

12.
<正>The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented.Existence and uniqueness of optimal solutions is proved. A collective Gauss-Seidel scheme and a multigrid scheme are discussed.Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.  相似文献   

13.
In this review,we intend to clarify the underlying ideas and the relations between various multigrid methods ranging from subset decomposition,to projected subspace decomposition and truncated multigrid.In addition,we present a novel globally convergent inexact active set method which is closely related to truncated multigrid.The numerical properties of algorithms are carefully assessed by means of a degenerate problem and a problem with a complicated coincidence set.  相似文献   

14.
We discuss several optimization procedures to solve finite element approximations of linear-quadratic Dirichlet optimal control problems governed by an elliptic partial differential equation posed on a 2D or 3D Lipschitz domain. The control is discretized explicitly using continuous piecewise linear approximations. Unconstrained, control-constrained, state-constrained and control-and-state constrained problems are analysed. A preconditioned conjugate method for a reduced problem in the control variable is proposed to solve the unconstrained problem, whereas semismooth Newton methods are discussed for the solution of constrained problems. State constraints are treated via a Moreau–Yosida penalization. Convergence is studied for both the continuous problems and the finite dimensional approximations. In the finite dimensional case, we are able to show convergence of the optimization procedures even in the absence of Tikhonov regularization parameter. Computational aspects are also treated and several numerical examples are included to illustrate the theoretical results.  相似文献   

15.
In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalue. This vector has been found to have applications in fields such as graph partitioning and graph drawing. The algorithm is a purely algebraic approach based on a heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical insight, we also consider the related cascadic multigrid method in the geometric setting for elliptic eigenvalue problems and show its uniform convergence under certain assumptions. Numerical tests are presented for computing the Fiedler vector of several practical graphs, and numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.  相似文献   

16.
In this paper, we consider an optimal control problem for distributed systems governed by parabolic equations. The state equations are nonlinear in the control variable; the constraints and the cost functional are generally nonconvex. Relaxed controls are used to prove existence and derive necessary conditions for optimality. To compute optimal controls, a descent method is applied to the resulting relaxed problem. A numerical method is also given for approximating a special class of relaxed controls, notably those obtained by the descent method. Convergence proofs are given for both methods, and a numerical example is provided.  相似文献   

17.
A full multigrid finite element method is proposed for semilinear elliptic equations. The main idea is to transform the solution of the semilinear problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and semilinear problems on a very low dimensional space. The linearized boundary value problems are solved by some multigrid iterations. Besides the multigrid iteration, all other efficient numerical methods can also serve as the linear solver for solving boundary value problems. The optimality of the computational work is also proved. Compared with the existing multigrid methods which need the bounded second order derivatives of the nonlinear term, the proposed method only needs the Lipschitz continuation in some sense of the nonlinear term.  相似文献   

18.
In this paper, a new multilevel correction scheme is proposed to solve Stokes eigenvalue problems by the finite element method. This new scheme contains a series of correction steps, and the accuracy of eigenpair approximation can be improved after each step. In each correction step, we only need to solve a Stokes problem on the corresponding fine finite element space and a Stokes eigenvalue problem on the coarsest finite element space. This correction scheme can improve the efficiency of solving Stokes eigenvalue problems by the finite element method. As applications of this multilevel correction method, a multigrid method and an adaptive finite element technique are introduced for Stokes eigenvalue problems. Some numerical results are given to validate our schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A numerical scheme based on the piecewise parabolic method on a local stencil (PPML) is proposed for solving the ideal magnetohydrodynamic (MHD) equations. The method makes use of the conservation of Riemann invariants along the characteristics of the MHD equations. As a result, a local stencil can be used to construct a numerical solution. This approach improves the dissipative properties of the numerical scheme and is convenient in the case of adaptive grids. The basic stages in the design of the scheme are illustrated in the two-dimensional case. The conservation of the solenoidal property of the magnetic field is discussed. The scheme is tested using several typical MHD problems.  相似文献   

20.
This paper mainly concerns the numerical solution of a nonlinear parabolic double obstacle problem arising in a finite-horizon optimal investment problem with proportional transaction costs. The problem is initially posed in terms of an evolutive HJB equation with gradient constraints and the properties of the utility function allow to obtain the optimal investment solution from a nonlinear problem posed in one spatial variable. The proposed numerical methods mainly consist of a localization procedure to pose the problem on a bounded domain, a characteristics method for time discretization to deal with the large gradients of the solution, a Newton algorithm to solve the nonlinear term in the governing equation and a projected relaxation scheme to cope with the double obstacle (free boundary) feature. Moreover, piecewise linear Lagrange finite elements for spatial discretization are considered. Numerical results illustrate the performance of the set of numerical techniques by recovering all qualitative properties proved in Dai and Yi (2009) [6].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号