首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multivalent aptamer–siRNA conjugates containing multiple mucin‐1 aptamers and BCL2‐specific siRNA are synthesized, and doxorubicin, an anthracycline anticancer drug, is loaded into these conjugates through intercalation with nucleic acids. These doxorubicin‐incorporated multivalent aptamer–siRNA conjugates are transfected to mucin‐1 overexpressing MCF‐7 breast cancer cells and their multidrug‐resistant cell lines. Doxorubicin‐incorporated multivalent aptamer–siRNA conjugates exert promising anticancer effects, such as activation of caspase‐3/7 and decrease of cell viability, on multidrug‐resistant cancer cells because of their high intracellular uptake efficiency. Thus, this delivery system is an efficient tool for combination oncotherapy with chemotherapeutics and nucleic acid drugs to overcome multidrug resistance.

  相似文献   


2.
Well‐defined poly(ethylene glycol)‐b‐allyl functional polylactide‐b‐polylactides (PEG‐APLA‐PLAs) are synthesized through sequential ring‐opening polymerization. PEG‐APLA‐PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core–shell interface cross‐linked micelles (ICMs) by micellization and UV‐initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological‐mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug‐ICM formulations possess slow and sustained drug release profiles under physiological‐mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox‐loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross‐linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs.

  相似文献   


3.
Cancer is still a growing public health problem, especially breast cancer that is one of the most important cancers in women. Chemotherapy, even though a successful treatment, is accompanied by severe side effects. Moreover, most of the drugs used for chemotherapy are administered as prodrugs and need to be transformed to the active form by cytochromes P450 (CYPs). In addition, increasing numbers of cancer tissues show lower CYP activity than the surrounding healthy tissues in which prodrugs are preferentially activated causing cytotoxicity. Here, the design of a functionalized cytochrome P450 bioconjugate is reported as nanovehicle for the enzyme direct delivery to the tumor tissue in order to improve the local drug activation. MCF‐7 breast cancer cells are treated with CYP‐polyethylene glycol bioconjugate functionalized folic acid, where it activates the prodrug tamoxifen and significantly reduces the dose of tamoxifen needed to kill the tumor cells. The CYP bioconjugate covered with polyethylene glycol shows no immunogenic activity. The advantages of increasing the site‐specific CYP activity in tumor tissues are discussed.

  相似文献   


4.
Graphene oxide (GO) has received increasing attention in bioengineering fields due to its unique biophysical and electrical properties, along with excellent biocompatibility. The application of GO nanoparticles (GO‐NPs) to engineer self‐renewal and differentiation of human fetal neural stem cells (hfNSCs) is reported. GO‐NPs added to hfNSC culture during neurosphere formation substantially promote cell‐to‐cell and cell‐to‐matrix interactions in neurospheres. Accordingly, GO‐NP‐treated hfNSCs show enhanced self‐renewal ability and accelerated differentiation compared to untreated cells, indicating the utility of GO in developing stem cell therapies for neurogenesis.

  相似文献   


5.
The phase behavior of a dendritic amphiphile containing a Newkome‐type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air–liquid interface. The amphiphile forms stable monomolecular films at the air–liquid interface on different subphases. Furthermore, the mineralization of calcium phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High‐resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano‐needles aggregate into larger flake‐like objects.

  相似文献   


6.
Combined treatment is more effective than single treatment against most forms of cancer. In this work, doxorubicin loaded chitosan–W18O49 nanoparticles combined with the photothermal therapy and chemotherapy are fabricated through the electrostatic interaction between positively charged chitosan and negatively charged W18O49 nanoparticles. The in vitro and in vivo behaviors of these nanoparticles are examined by dynamic light scattering, transmission electron microscopy, cytotoxicity, near‐infrared fluorescence imaging, and tumor growth inhibition experiment. These nanoparticles have a mean size around 110 nm and show a pH sensitive drug release behavior. After irradiation by the 980 nm laser, these nanoparticles show more pronounced cytotoxicity against HeLa cells than that of free doxorubicin or photothermal therapy alone. The in vivo experiments confirm that their antitumor ability is significantly improved, resulting in superior efficiency in impeding tumor growth and extension of the lifetime of mice.

  相似文献   


7.
Melanin is an effective absorber of light and can extend to near infrared (NIR) regions. In this study, a natural melanin is presented as a photothermal therapeutic agent (PTA) because it provides a good photothermal conversion efficiency, shows biodegradability, and does not induce long‐term toxicity during retention in vivo. Poloxamer solution containing melanin (Pol–Mel) does not show any precipitation and shows sol–gel transition at body temperature. After irradiation from 808 nm NIR laser at 1.5 W cm−2 for 3 min, the photothermal conversion efficiency of Pol–Mel is enough to kill cancer cells in vitro and in vivo. The tumor growth of mice bearing CT26 tumors treated with Pol–Mel injection and laser irradiation is suppressed completely without recurrence postirradiation. All these results indicate that Pol–Mel can become an attractive PTA for photothermal cancer therapy.

  相似文献   


8.
9.
Highly efficient functionalization and cross‐linking of polypeptides is achieved via tyrosine‐triazolinedione (TAD) conjugation chemistry. The feasibility of the reaction is demonstrated by the reaction of 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione (PTAD) with tyrosine containing block copolymer poly(ethylene glycol)‐Tyr4 as well as a statistical copolymer of tyrosine and lysine (poly(Lys40st‐Tyr10)) prepared form N‐carboxyanhydride polymerization. Selective reaction of PTAD with the tyrosine units is obtained and verified by size exclusion chromatography and NMR spectroscopy. Moreover, two monofunctional and two difunctional TAD molecules are synthesized. It is found that their stability in the aqueous reaction media significantly varied. Under optimized reaction conditions selective functionalization and cross‐linking, yielding polypeptide hydrogels, can be achieved. TAD‐mediated conjugation can offer an interesting addition in the toolbox of selective (click‐like) polypeptide conjugation methodologies as it does not require functional non‐natural amino acids.

  相似文献   


10.
Cell surface integrins, which play important roles in the survival, proliferation, migration, and invasion of cancer cells, are a viable target for treatment of metastatic breast cancer. This line of therapy still remains challenging due to the lack of proper identification and validation of effective targets as well as the lack of suitable therapeutic agents for treatment. The focus is on one such molecular target for this purpose, namely integrin‐β1, and effective lowering of integrin‐β1 levels on a breast cancer model (MDA‐MB‐231 cells) is achieved by delivering a dicer‐substrate short interfering RNA (siRNA) targeting integrin‐β1 with lipid‐modified low molecular weight polyethylenimine polymers. Reduction of integrin‐β1 levels leads to reduced adhesion of MDA‐MB‐231 cells to extracellular matrix component fibronectin as well as to human bone marrow cells. A reduced migration of the breast cancer cells is also observed after integrin‐β1 silencing in “scratch” and “transwell” migration assays. These results highlight the importance of integrin‐β1 for the migration of metastatic breast cancer cells by effectively silencing this target with a practical dose of siRNA.

  相似文献   


11.
Simple construction and manipulation of low‐molecular‐weight supramolecular nanogels, based on the introduction of multiple hydrogen bonding interactions, with the desired physical properties to achieve effective and safe delivery of drugs for cancer therapy remain highly challenging. Herein, a novel supramolecular oligomer cytosine (Cy)‐polypropylene glycol containing self‐complementary multiple hydrogen‐bonded Cy moieties is developed, which undergoes spontaneous self‐assembly to form nanosized particles in an aqueous environment. Phase transitions and scattering studies confirm that the supramolecular nanogels can be readily tailored to obtain the desired phase‐transition temperature and temperature‐induced release of the anticancer drug doxorubicin (DOX). The resulting nanogels exhibit an extremely high load carrying capacity (up to 24.8%) and drug‐entrapment stability, making the loading processes highly efficient. Importantly, in vitro cytotoxicity assays indicate that DOX‐loaded nanogels possess excellent biosafety for drug delivery applications under physiological conditions. When the environmental temperature is increased to 40 °C, DOX‐loaded nanogels trigger rapid DOX release and exert cytotoxic effects, significantly reducing the dose required compared to free DOX. Given its simplicity, low cost, high reliability, and efficiency, this newly developed temperature‐responsive nanocarrier has highly promising potential for controlled release drug delivery systems.

  相似文献   


12.
3D hydrogels better replicate in vivo conditions, and yield different results from 2D substrates. However, imaging interactions between cells and the hydrogel microenvironment is challenging because of light diffraction and poor focal depth. Here, cryosectioning and vibrating microtomy methods and fixation protocols are compared. Collagen I/III hydrogel sections (20–100 µm) are fixed with paraformaldehyde (2%–4%) and structurally evaluated. Cryosectioning damaged hydrogels, and vibrating microtomy (100 µm, 2%) yielded the best preservation of microstructure and cell integrity. These results demonstrate a potential processing method that preserves hydrogel and cell integrity, permitting imaging of cell interactions with the microenvironment.

  相似文献   


13.
Inadequate drug loading of hydrophobic drugs is a classic problem when hydrogels are utilized as sustained‐release carriers of drugs. Herein, a strategy to load plenty of hydrophobic drugs is presented. The antitumor drug 10‐hydroxycamptothecin in the thermogel of poly(d ,l ‐lactic acid‐co‐glycolic acid)‐b‐poly(ethylene glycol)‐b‐poly(d ,l ‐lactic acid‐co‐glycolic acid) is employed. The drug is soluble in an alkaline medium, yet insoluble in a neutral/acidic medium. The crystallization is triggered after adding an alkaline drug solution into an acidic copolymer solution. The concentrated copolymer aqueous solution undergoes a sol–gel transition upon heating, faster than the crystallization. As a result, plenty of evenly dispersed drug microcrystals are formed. The in vitro and in vivo experiments indicate both high drug loading and sustained release with enhanced antitumor efficacy and reduced adverse effects. The system resolves the challenge in formulation of hydrophobic drugs in hydrogels, and is stimulating for encapsulating drugs with a soluble‐insoluble transition into a material environment.

  相似文献   


14.
Intermediate filaments constitute a class of biopolymers whose function is still poorly understood. One example for such intermediate filaments is given by neurofilaments, large macromolecules that fill the axon of neurons. Here, reconstituted networks of purified porcine neurofilaments are studied and the diffusion behavior of different nanoparticles in the biopolymer network is evaluated. A strong dependence of particle diffusion on the charge state of the particles, and – for liposomes – also on the fatty acid configuration of lipids is observed. The results suggest that both electrostatic and hydrophobic interactions contribute to nanoparticle trapping in neurofilament networks, and that the latter is enabled by lipids with an inverted cone geometry which grant access to the hydrophobic core of the liposome shell.

  相似文献   


15.
Aligned poly(l ‐lactide)/poly(methyl methacrylate) binary blend fibers and mats loaded with a chimeric green fluorescence protein having a bioactive peptide with hydroxyapatite binding and mineralization property are prepared by pressurized gyration. The effect of processing parameters on the product morphologies, and the shape memory properties of these samples are investigated. Integration of hydroxyapatite nanoparticles into the fiber assembly is self‐directed using the hydroxyapatite‐binding property of the peptide genetically engineered to green fluorescence protein. Fluorescence microscopy analysis corroborated with Fourier transform infrared spectroscopy (FTIR) data confirms the integration of the chimeric protein with the fibers. An enzyme based remineralization assay is conducted to study the effects of peptide‐mediated mineralization within the fiber mats. Raman and FTIR spectral changes observed following the peptide‐mediated mineralization provides an initial step toward a soft‐hard material transition. These results show that programmable shape memory properties can be obtained by incorporating genetically engineered bioactive peptide domains into polymer fibers.

  相似文献   


16.
Chitosan‐based molecular imprinted polymer (CS‐MIP) nanogel is prepared in the presence of morphine template, fully characterized and used as a new vehicle to extend duration of morphine analgesic effect in Naval Medical Research Institute mice. The CS‐MIP nanogel with ≈25 nm size range exhibits 98% loading efficiency, and in vitro release studies show an initial burst followed by an extended slow release of morphine. In order to study the feasibility of CS‐MIP nanogel as morphine carrier, 20 mice are divided into two groups randomly and received subcutaneous injection of morphine‐loaded CS‐MIP and morphine (10 mg kg?1) dissolved in physiologic saline. Those received injection of morphine‐loaded CS‐MIP show slower and long lasting release of morphine with 193 min effective time of 50% (ET50) analgesia compared to 120 min ET50 in mice received morphine dissolved in physiologic saline. These results suggest that CS‐MIP nanogel can be a possible strategy as morphine carrier for controlled release and extension of its analgesic efficacy.

  相似文献   


17.
Cell sheet transplantation is a key tissue engineering technology. A vascular endothelial growth factor (VEGF)‐releasing fiber mat is developed for the transplantation of multilayered cardiomyocyte sheets. Poly(vinyl alcohol) fiber mats bearing poly(lactic‐co‐glycolic acid) nanoparticles that incorporate VEGF are fabricated using electrospinning and electrospray methods. Six‐layered cardiomyocyte sheets are transplanted with a VEGF‐releasing mat into athymic rats. After two weeks, these sheets produce thicker cardiomyocyte layers compared with controls lacking a VEGF‐releasing mat, and incorporate larger‐diameter blood vessels containing erythrocytes. Thus, local VEGF release near the transplanted cardiomyocytes induces vascularization, which supplies sufficient oxygen and nutrients to prevent necrosis. In contrast, cardiomyocyte sheets without a VEGF‐releasing mat do not survive in vivo, probably undergo necrosis, and are reduced in thickness. Hence, these VEGF‐releasing mats enable the transplantation of multilayered cardiomyocyte sheets in a single procedure, and should expand the potential of cell sheet transplantation for therapeutic applications.

  相似文献   


18.
Herein, a kind of dual acid‐sensitive nanoparticles based on monomethoxy poly(ethylene glycol)‐imine‐β‐cyclodextrin is constructed by a facile phenylboronic acid‐cross‐linked way. The data of dynamic light scattering and transmission electron microscope reveal the cross‐linked nanoparticles have improved stability. The cross‐linked nanoparticles could easily self‐assemble and load the anticancer drug at neutral pH condition. However, when the drug‐loaded nanoparticles are delivered to extracellular tumor sites (pH ≈6.8), the surface of the nanoparticles would be amino positively charged and easily internalized by tumor cell due to the cleavage of the acid‐labile benzoic–imine. Subsequently, with the acidity in subcellular compartments significantly increasing (such as the endosome pH ≈5.3), the loaded drug would fast release from the endocytosis carriers due to the hydrolysis of boronate ester. These features suggest that these dual acid‐sensitive cross‐linked nanoparticles not only possess excellent biocompatibility but also can efficiently load and deliver anticancer drug into tumor cells to enhance the inhibition of cellular proliferation, outlining a favorable platform as drug carriers.

  相似文献   


19.
This study presents a molecular model for the amplitude‐dependent dynamic moduli of polymer melts reinforced with nanoparticles. This study shows that intense strain‐thinning reported in experimental studies of polymer nanocomposites can be attributed to disentanglement of bulk polymer chains from those strongly adsorbed to the surface of nanoparticles. This flow‐induced relaxation is what is frequently termed as convective constraint release and is similar to the cohesive slip of polymer melt at solid interfaces.

  相似文献   


20.
Stimuli‐responsive nanocarriers with the ability to respond to tumorous heterogeneity have been extensively developed for drug delivery. However, the premature release during blood circulation and insufficient intracellular drug release are still a significant issue. Herein, three disulfide bonds are introduced into the amphiphilic poly(ethylene glycol)‐polycaprolactone copolymer blocks to form triple‐sensitive cleavable polymeric nanocarrier (tri‐PESC NPs) to improve its sensitivity to narrow glutathione (GSH) concentration. The tri‐PESC NPs keep intact during blood circulation due to the limited cleaving of triple‐disulfide bonds, whereas the loaded drug is efficiently released at tumor cells with the increased concentration of GSH. In vitro studies of doxorubicin‐loaded tri‐PESC NPs show that the nanocarriers achieve sufficient drug release in cancerous cells and inhibit the tumor cells growth, though they only bring minimum damage to normal cells. Therefore, the tri‐PESC NPs with triple‐sensitive cleavable bonds hold great promise to improve the therapeutic index in cancer therapy.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号