首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Multivalent aptamer–siRNA conjugates containing multiple mucin‐1 aptamers and BCL2‐specific siRNA are synthesized, and doxorubicin, an anthracycline anticancer drug, is loaded into these conjugates through intercalation with nucleic acids. These doxorubicin‐incorporated multivalent aptamer–siRNA conjugates are transfected to mucin‐1 overexpressing MCF‐7 breast cancer cells and their multidrug‐resistant cell lines. Doxorubicin‐incorporated multivalent aptamer–siRNA conjugates exert promising anticancer effects, such as activation of caspase‐3/7 and decrease of cell viability, on multidrug‐resistant cancer cells because of their high intracellular uptake efficiency. Thus, this delivery system is an efficient tool for combination oncotherapy with chemotherapeutics and nucleic acid drugs to overcome multidrug resistance.

  相似文献   


2.
Cell surface integrins, which play important roles in the survival, proliferation, migration, and invasion of cancer cells, are a viable target for treatment of metastatic breast cancer. This line of therapy still remains challenging due to the lack of proper identification and validation of effective targets as well as the lack of suitable therapeutic agents for treatment. The focus is on one such molecular target for this purpose, namely integrin‐β1, and effective lowering of integrin‐β1 levels on a breast cancer model (MDA‐MB‐231 cells) is achieved by delivering a dicer‐substrate short interfering RNA (siRNA) targeting integrin‐β1 with lipid‐modified low molecular weight polyethylenimine polymers. Reduction of integrin‐β1 levels leads to reduced adhesion of MDA‐MB‐231 cells to extracellular matrix component fibronectin as well as to human bone marrow cells. A reduced migration of the breast cancer cells is also observed after integrin‐β1 silencing in “scratch” and “transwell” migration assays. These results highlight the importance of integrin‐β1 for the migration of metastatic breast cancer cells by effectively silencing this target with a practical dose of siRNA.

  相似文献   


3.
3D hydrogels better replicate in vivo conditions, and yield different results from 2D substrates. However, imaging interactions between cells and the hydrogel microenvironment is challenging because of light diffraction and poor focal depth. Here, cryosectioning and vibrating microtomy methods and fixation protocols are compared. Collagen I/III hydrogel sections (20–100 µm) are fixed with paraformaldehyde (2%–4%) and structurally evaluated. Cryosectioning damaged hydrogels, and vibrating microtomy (100 µm, 2%) yielded the best preservation of microstructure and cell integrity. These results demonstrate a potential processing method that preserves hydrogel and cell integrity, permitting imaging of cell interactions with the microenvironment.

  相似文献   


4.
Highly efficient functionalization and cross‐linking of polypeptides is achieved via tyrosine‐triazolinedione (TAD) conjugation chemistry. The feasibility of the reaction is demonstrated by the reaction of 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione (PTAD) with tyrosine containing block copolymer poly(ethylene glycol)‐Tyr4 as well as a statistical copolymer of tyrosine and lysine (poly(Lys40st‐Tyr10)) prepared form N‐carboxyanhydride polymerization. Selective reaction of PTAD with the tyrosine units is obtained and verified by size exclusion chromatography and NMR spectroscopy. Moreover, two monofunctional and two difunctional TAD molecules are synthesized. It is found that their stability in the aqueous reaction media significantly varied. Under optimized reaction conditions selective functionalization and cross‐linking, yielding polypeptide hydrogels, can be achieved. TAD‐mediated conjugation can offer an interesting addition in the toolbox of selective (click‐like) polypeptide conjugation methodologies as it does not require functional non‐natural amino acids.

  相似文献   


5.
In this study, double‐emulsion capsules (DECs) capable of concealing drug‐incorporated targeted‐supermolecules are developed to achieve “on‐demand” supermolecule release and enhanced sequential targeting for magneto‐chemotherapy. These water‐in‐oil‐in‐water DECs less than 200 nm in diameter are synthesized using a single component of PVA (polyvinyl alcohol) polymer and the magnetic nanoparticles, which are capable of encapsulating large quantities of targeted supermolecules composed of palitaxel‐incorporated beta‐cyclodextrin decorated by hyaluronic acid (HA, a CD44‐targeting ligand) in the watery core. The release profiles (slow, sustained and burst release) of the targeted supermolecules can be directly controlled by regulating the high‐frequency magnetic field (HFMF) and polymer conformation without sacrificing the targeting ability. Through an intravenous injection, the positive targeting of the supermolecules exhibited a 20‐fold increase in tumor accumulation via the passive targeting and delivery of DECs followed by positive targeting of the supermolecules. Moreover, this dual‐targeting drug‐incorporated supermolecular delivery vehicle at the tumor site combined with magneto‐thermal therapy suppressed the cancer growth more efficiently than treatment with either drug or supermolecule alone.

  相似文献   


6.
Cell sorting is important for cell biology and regenerative medicine. A visible light‐responsive cell scaffold is produced using gold nanoparticles and collagen gel. Various kinds of cells are cultured on the visible light‐responsive cell scaffold, and the target cells are selectively detached by photoirradiation without any cytotoxicity. This is a new image‐guided cell sorting system.

  相似文献   


7.
The condensation of nucleic acids into compact nanoparticles with cationic carriers is a powerful tool for translocating exogenous nucleic acids into cells. To date, most efforts have been focused on the development of novel gene carriers for safe and efficient gene delivery. However, small interfering RNA (siRNA) is generally not strongly associated with cationic carriers due to its stiff structure and low spatial charge density. To overcome this limitation, this work introduces a well‐defined dimeric conjugate of small internally segment interfering RNA (sisiRNA) linked via a disulfide bond for enhanced cellular uptake and gene silencing. Dimeric sisiRNA is synthesized through oxidizing two monomeric sisiRNA molecules, each of which consists of a sense strand carrying a nick and an antisense strand modified with a thiol group at the 3′‐end. The nick in the sense strand enables the dimeric sisiRNA to be more effectively condensed into nanosized complexes due to the increased structural flexibility, which results in a higher gene silencing efficiency compared with the dimeric siRNA containing the intact sense strands. The results indicate that the discontinuity of the sense strands is a simple method of adding more flexibility to various siRNA‐based nanostructures for enhanced gene silencing.

  相似文献   


8.
Here, it is demonstrated that X‐ray nanotomography with Zernike phase contrast can be used for 3D imaging of cells grown on electrospun polymer scaffolds. The scaffold fibers and cells are simultaneously imaged, enabling the influence of scaffold architecture on cell location and morphology to be studied. The high resolution enables subcellular details to be revealed. The X‐ray imaging conditions were optimized to reduce scan times, making it feasible to scan multiple regions of interest in relatively large samples. An image processing procedure is presented which enables scaffold characteristics and cell location to be quantified. The procedure is demonstrated by comparing the ingrowth of cells after culture for 3 and 6 days.

  相似文献   


9.
Aggregation‐caused quenching (ACQ) is a general phenomenon that is faced by traditional fluorescent polymers. Aggregation‐induced emission (AIE) is exactly opposite to ACQ. AIE molecules are almost nonemissive in their molecularly dissolved state, but they can be induced to show high fluorescence in the aggregated or solid state. Incorporation of AIE phenomenon into polymer design has yielded various polymers with AIE characteristics. In this review, the recent progress of AIE polymers for biological applications is summarized.

  相似文献   


10.
An efficiently siRNA transporting nanocarrier still remains to be developed. In this study, utilizing the dual stimulus of acid tumor extracellular environment and redox effect of glutathione in the cytosol, a new siRNA transporting system combining triple effects of folate targeting, acid sensitive polymer micelles, and bio‐reducible disulfide bond linked siRNA‐cell penetrating peptides (CPPs) conjugate is developed to suppress c‐myc gene expression of breast cancer (MCF‐7 cells) both in vitro and in vivo. Subsequent research demonstrates that the vesicle has particle size of about 100 nm and siRNA entrapment efficiency of approximately 80%. In vitro studies verified over 90% of encapsulated siRNA‐CPPs can be released and the vesicle shows higher cellular uptake in response to the tumorous zone. Determination of gene expression at both mRNA and protein levels indicates the constructed vesicle exhibited enhanced cancer cell apoptosis and improved therapeutic efficacy in vitro and in vivo.

  相似文献   


11.
In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross‐linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x‐iPP is stable for many cycles, x‐sPP ruptures after the first shape‐memory cycle. It is shown by wide‐angle X‐ray scattering (WAXS) experiments that cross‐linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals.

  相似文献   


12.
Graphene oxide (GO) has received increasing attention in bioengineering fields due to its unique biophysical and electrical properties, along with excellent biocompatibility. The application of GO nanoparticles (GO‐NPs) to engineer self‐renewal and differentiation of human fetal neural stem cells (hfNSCs) is reported. GO‐NPs added to hfNSC culture during neurosphere formation substantially promote cell‐to‐cell and cell‐to‐matrix interactions in neurospheres. Accordingly, GO‐NP‐treated hfNSCs show enhanced self‐renewal ability and accelerated differentiation compared to untreated cells, indicating the utility of GO in developing stem cell therapies for neurogenesis.

  相似文献   


13.
The authors report a method to prepare cell‐laden, cell‐sized microparticles from various materials suitable for individual applications. The method includes a piezoelectric inkjetting technology and a horseradish peroxidase (HRP)‐catalyzed crosslinking reaction. The piezoelectric inkjetting technology enables production of cell‐laden, cell‐sized (20–60 μm) droplets from a polymer aqueous solution. The HRP‐catalyzed crosslinking of the polymer in the ejected solution enables production of spherical microparticles from various materials. Superior cytocompatibility of the microencapsulation method is confirmed from the viability and growth profiles of normal murine mammary gland epithelial cells.

  相似文献   


14.
Cell sheet transplantation is a key tissue engineering technology. A vascular endothelial growth factor (VEGF)‐releasing fiber mat is developed for the transplantation of multilayered cardiomyocyte sheets. Poly(vinyl alcohol) fiber mats bearing poly(lactic‐co‐glycolic acid) nanoparticles that incorporate VEGF are fabricated using electrospinning and electrospray methods. Six‐layered cardiomyocyte sheets are transplanted with a VEGF‐releasing mat into athymic rats. After two weeks, these sheets produce thicker cardiomyocyte layers compared with controls lacking a VEGF‐releasing mat, and incorporate larger‐diameter blood vessels containing erythrocytes. Thus, local VEGF release near the transplanted cardiomyocytes induces vascularization, which supplies sufficient oxygen and nutrients to prevent necrosis. In contrast, cardiomyocyte sheets without a VEGF‐releasing mat do not survive in vivo, probably undergo necrosis, and are reduced in thickness. Hence, these VEGF‐releasing mats enable the transplantation of multilayered cardiomyocyte sheets in a single procedure, and should expand the potential of cell sheet transplantation for therapeutic applications.

  相似文献   


15.
Stimuli‐responsive nanocarriers with the ability to respond to tumorous heterogeneity have been extensively developed for drug delivery. However, the premature release during blood circulation and insufficient intracellular drug release are still a significant issue. Herein, three disulfide bonds are introduced into the amphiphilic poly(ethylene glycol)‐polycaprolactone copolymer blocks to form triple‐sensitive cleavable polymeric nanocarrier (tri‐PESC NPs) to improve its sensitivity to narrow glutathione (GSH) concentration. The tri‐PESC NPs keep intact during blood circulation due to the limited cleaving of triple‐disulfide bonds, whereas the loaded drug is efficiently released at tumor cells with the increased concentration of GSH. In vitro studies of doxorubicin‐loaded tri‐PESC NPs show that the nanocarriers achieve sufficient drug release in cancerous cells and inhibit the tumor cells growth, though they only bring minimum damage to normal cells. Therefore, the tri‐PESC NPs with triple‐sensitive cleavable bonds hold great promise to improve the therapeutic index in cancer therapy.

  相似文献   


16.
This study describes the development and cell culture application of nanometer thick photocrosslinkable thermoresponsive polymer films prepared by physical adsorption. Two thermoresponsive polymers, poly(N‐isopropylacrylamide (NIPAm)‐co‐acrylamidebenzophenone (AcBzPh)) and poly(NIPAm‐co‐AcBzPh‐co‐N‐tertbutylacrylamide) are investigated. Films are prepared both above and below the polymers' lower critical solution temperatures (LCSTs) and cross‐linked, to determine the effect, adsorption preparation temperature has on the resultant film. The films prepared at temperatures below the LCST are smoother, thinner, and more hydrophilic than those prepared above. Human pulmonary microvascular endothelial cell (HPMEC) adhesion and proliferation are superior on the films produced below the polymers LCST compared to those produced above. Cells sheets are detached by simply lowering the ambient temperature to below the LCST. Transmission electron, scanning electron, and light microscopies indicate that the detached HPMEC sheets maintain their integrity.

  相似文献   


17.
A DOX‐loaded polysaccharide‐lecithin reverse micelles triglyceride‐based oral delivery nanocarrier (D‐PL/TG NPs) conjugated with (i) RGD peptide for targeting to β1 integrin of M cells and (ii) Lyp‐1 peptide for targeting to the p32 receptor of MDA‐MB‐231 cells is used to investigate the multistage continuous targeting capabilities of these peptide‐conjugated nanocarriers (GLD‐PL/TG NPs) for tumor therapy. Variations in the targeting efficacy and pharmacokinetic properties are investigated by quantitatively controlling the surface density of different peptides on the nanoparticles. In vitro permeability in a human follicle‐associated epithelium model and cytotoxicity against MDA‐MB‐231 cells indicate that the nanocarriers conjugated with high RGD peptide concentrations display a higher permeability due to the existence of M cells with higher transcytosis activity, but a higher concentration of conjugated Lyp‐1 peptide exhibits the lowest cell viability. Being benefited from specific targeting of peptide conjugation, improved bioavailability and enhanced tumor accumulation are achieved by the GLD‐PL/TG NPs, leading to better antitumor efficacy. The results of in vivo biodistribution and antitumor studies reveal that the effect of LyP‐1 peptide is more predominant than that of RGD peptide. This proof of multistage continuous targeting may open the door to a new generation of oral drug delivery systems in targeted cancer therapy.

  相似文献   


18.
The strand material in extrusion‐based bioprinting determines the microenvironments of the embedded cells and the initial mechanical properties of the constructs. One unmet challenge is the combination of optimal biological and mechanical properties in bioprinted constructs. Here, a novel bioprinting method that utilizes core–shell cell‐laden strands with a mechanically robust shell and an extracellular matrix‐like core has been developed. Cells encapsulated in the strands demonstrate high cell viability and tissue‐like functions during cultivation. This process of bioprinting using core–shell strands with optimal biochemical and biomechanical properties represents a new strategy for fabricating functional human tissues and organs.

  相似文献   


19.
A multicomponent functional polymer is synthesized to support specific reactivity for successful conjugation with the vast array of functionality present in biological systems and the flexibility to conjugate biomolecules without requiring additional modification to install a terminal functional group. The multifunctional surface is realized using a novel coating composed of distinct N‐hydroxysuccinimide (NHS) ester and benzoyl functionalities, which can provide accessibility to both the NHS ester‐amine coupling reaction and the photochemically induced benzophenone crosslinking reaction, respectively. In addition, the multifunctional polymer is fabricated and transformed to form nanoscale colloids through the solvent displacement of a water/DMF system due to solubility characteristics of the resulting polymer with high polarity. A facile and efficient fabrication approach using the multifunctional nanocolloid is thus demonstrated to create a drug carrier by installing paclitaxel and folic acid for targeted cancer therapy.

  相似文献   


20.
Recombinant protein design allows modular protein domains with different functionalities and responsive behaviors to be easily combined. Inclusion of these protein domains can enable recombinant proteins to have complex responses to their environment (e.g., temperature‐triggered aggregation followed by enzyme‐mediated cleavage for drug delivery or pH‐triggered conformational change and self‐assembly leading to structural stabilization by adjacent complementary residues). These “smart” behaviors can be tuned by amino acid identity and sequence, chemical modifications, and addition of other components. A wide variety of domains and peptides have smart behavior. This review focuses on protein designs for self‐assembly or conformational changes due to stimuli such as shifts in temperature or pH.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号