首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supramolecular materials cross‐linked between polymer chains by noncovalent bonds have the potential to provide dynamic functions that are not produced by covalently cross‐linked polymeric materials. We focused on the formation of supramolecular polymeric materials through host–guest interactions: a powerful method for the creation of nonconventional materials. We employed two different kinds of host–guest inclusion complexes of β‐cyclodextrin (βCD) with adamantane (Ad) and ferrocene (Fc) to bind polymers together to form a supramolecular hydrogel (βCD‐Ad‐Fc gel). The βCD‐Ad‐Fc gel showed self‐healing ability when damaged and responded to redox stimuli by expansion or contraction. Moreover, the βCD‐Ad‐Fc gel showed a redox‐responsive shape‐morphing effect. We thus succeeded in deriving three functions from the introduction of two kinds of functional units into a supramolecular material.  相似文献   

2.
Supramolecular materials cross‐linked between polymer chains by noncovalent bonds have the potential to provide dynamic functions that are not produced by covalently cross‐linked polymeric materials. We focused on the formation of supramolecular polymeric materials through host–guest interactions: a powerful method for the creation of nonconventional materials. We employed two different kinds of host–guest inclusion complexes of β‐cyclodextrin (βCD) with adamantane (Ad) and ferrocene (Fc) to bind polymers together to form a supramolecular hydrogel (βCD‐Ad‐Fc gel). The βCD‐Ad‐Fc gel showed self‐healing ability when damaged and responded to redox stimuli by expansion or contraction. Moreover, the βCD‐Ad‐Fc gel showed a redox‐responsive shape‐morphing effect. We thus succeeded in deriving three functions from the introduction of two kinds of functional units into a supramolecular material.  相似文献   

3.
We report a novel, green hydrothermal‐synthesis route to well‐dispersed anatase TiO2 nanoparticles with particle sizes of 9–16 nm in the presence of β‐CD (β‐cyclodextrin). During the synthesis process, the CD‐containing synthesis mixture assembled in both longitudinal and latitudinal directions. Driven by the interaction between molecules, the β‐CDs assembled in the longitudinal direction to form long‐chain compounds, whereas in the latitudinal direction, they tended to form regular aggregates through coordination with the Ti species from the hydrolysis of tetrabutyl titanate. In view of the effect of the coordination and the steric hindrance of β‐CDs as a supramolecular shell, homogeneous nuclei and slow growth of TiO2 crystals during the synthesis process was observed, which was responsible for the formation of uniform TiO2 nanoparticles. The low β‐CD dosage and the high product yield (>90 %) demonstrated well the potential of this synthesis route in the large‐scale industrial production of anatase nanoparticles.  相似文献   

4.
Development of self‐healing and photostimulated luminescent supramolecular polymeric materials is important for artificial soft materials. A supramolecular polymeric hydrogel is reported based on the host–guest recognition between a β‐cyclodextrin (β‐CD) host polymer (poly‐β‐CD) and an α‐bromonaphthalene (α‐BrNp) polymer (poly‐BrNp) without any additional gelator, which can self‐heal within only about one minute under ambient atmosphere without any additive. This supramolecular polymer system can be excited to engender room‐temperature phosphorescence (RTP) signals based on the fact that the inclusion of β‐CD macrocycle with α‐BrNp moiety is able to induce RTP emission (CD‐RTP). The RTP signal can be adjusted reversibly by competitive complexation of β‐CD with azobenzene moiety under specific irradiation by introducing another azobenzene guest polymer (poly‐Azo).  相似文献   

5.
Herein we present β‐cyclodextrin (CD)‐functionalized reduced graphene oxide (RGO) nanosheets supported on silicate sol‐gel matrix‐embedded gold nanoparticles (Au NPs) modified electrode as a new affinity binding nanocomposite. The modified electrode is fabricated through layer‐by‐layer drop casting followed by immobilization of chemically modified enzyme conjugate (horse radish peroxidase (HRP)?adamantane carboxylic acid (ADA)). This affinity system is based on the supramolecular association between CDs and HRP?ADA and is mimicking the biological avidin?biotin interactions. CDs‐functionalized RGO (RGO?CD) functions as a macrocyclic host to form stable supramolecular inclusion complexes with enzyme conjugate. Besides Au NPs improve the interfacial interaction with RGO?CD nanosheets, and thus exhibit synergistic electrocatalytic effect toward H2O2 reduction in the presence of 1 mM hydroquinone.  相似文献   

6.
A poly[(2‐ethyl‐2‐oxazoline)‐ran‐(2‐nonyl‐2‐oxazoline)] copolymer in combination with hydroxypropylated cyclodextrins has been demonstrated to lead to a supramolecular self‐assembly process that results in the formation of kinetically trapped thermoresponsive nanoparticles. Selection of the cyclodextrin type provides control over the nanoparticle phase‐transition thermodynamics, thus affording optical temperature sensors with an unprecedented, long‐term thermal memory function, which is reversible or irreversible. This research also sheds light onto kinetic and dynamic supramolecular assemblies, thus providing important insight because similar supramolecular processes are at the foundation of living matter.  相似文献   

7.
Hydrogen bonding is widely present and plays a significant role in material science and supramolecular chemistry. This work reports a straightforward strategy for the preparation of polymeric nanoparticles from neutral poly(2‐oxazoline)s (POx) and tannic acid (TA) driven by their intermolecular hydrogen bonding. Dynamic light scattering (DLS) and scanning electron microscope (SEM) measurements showed that POx bearing different substituents, that is, methyl, ethyl and n‐propyl in the 2‐position all could assemble with TA into stable nanoparticles in water or ethanol. The diameter of the assembled nanoparticles could be manipulated by varying parameters such as molecular weight of POx, concentration and ratio of POx, and TA. Interestingly, POx/TA nanoparticles exhibited upper critical solution temperature (UCST)‐type thermoresponsive properties in ethanol or water depending on the molecular weight and substituent in the 2‐position of POx. Increasing or decreasing the temperature at the transition point resulted in the reversible transformation between assembled nanoparticles and disassembled poly(2‐n‐propyl‐2‐oxazoline) (PnPrOx) and TA. In view of the tailored size of the stable nanoparticles and the biocompatibilities of POx and TA, the prepared thermoresponsive nanoparticles are promising candidates as carriers for medicine toward related biomedical applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1520–1527  相似文献   

8.
A methodology for preparing supramolecular hydrogels from guest‐modified cyclodextrins (CDs) based on the host–guest and hydrogen‐bonding interactions of CDs is presented. Four types of modified CDs were synthesized to understand better the gelation mechanism. The 2D ROESY NMR spectrum of β‐CD‐AmTNB (Am=amino, TNB=trinitrobenzene) reveals that the TNB group was included in the β‐CD cavity. Pulsed field gradient NMR (PFG NMR) spectroscopy and AFM show that β‐CD‐AmTNB formed a supramolecular polymer in aqueous solution through head‐to‐tail stacking. Although β‐CD‐AmTNB did not produce a hydrogel due to insufficient growth of supramolecular polymers, β‐CD‐CiAmTNB (Ci=cinnamoyl) formed supramolecular fibrils through host–guest interactions. Hydrogen bonds between the cross‐linked fibrils resulted in the hydrogel, which displayed excellent chemical‐responsive properties. Gel‐to‐sol transitions occurred by adding 1‐adamantane carboxylic acid (AdCA) or urea. 1H NMR and induced circular dichroism (ICD) spectra reveal that AdCA released the guest parts from the CD cavity and that urea acts as a denaturing agent to break the hydrogen bonds between CDs. The hydrogel was also destroyed by adding β‐CD, which acts as the competitive host to reduce the fibrils. Furthermore, the gel changed to a sol by adding methyl orange (MO) as a guest compound, but the gel reappeared upon addition of α‐CD, which is a stronger host for MO.  相似文献   

9.
The microwave‐assisted statistical copolymerization of 2‐phenyl‐2‐oxazoline with 2‐methyl‐2‐oxazoline or 2‐ethyl‐2‐oxazoline is discussed in this contribution. Kinetic studies of these statistical copolymerizations as well as reactivity ratio determinations were performed to investigate the monomer distribution in these copoly(2‐oxazoline)s, demonstrating the formation of quasi‐diblock copolymers. In addition, the synthesis of copolymer series with monomer concentrations ranging from 0 to 100 mol % is described. These copolymer series were characterized with 1H NMR spectroscopy, gas chromatography, and gel permeation chromatography. Moreover, the glass‐transition temperatures and solubility of these copolymers were studied, and this revealing better mixing of poly(2‐methyl‐2‐oxazoline) (pMeOx) with poly(2‐phenyl‐2‐oxazoline) (pPhOx) than poly(2‐ethyl‐2‐oxazoline) (pEtOx) with poly(2‐phenyl‐2‐oxazoline) (pPhOx). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 416–422, 2007.  相似文献   

10.
A poly(ethylene glycol)‐b‐poly(L ‐lysine) diblock copolymer (PEG‐b‐PLL) was synthesized. Micellization of this hydrophilic copolymer due to the block‐specific threading of α‐cyclodextrin (α‐CD) molecules onto the polyethylene glycol (PEG) block yielded supramolecular‐structured nanoparticles, which undergoes pH‐inducible gelation in aqueous media. The pH‐inducible gelation of supramolecular micelle in water appeared to be completely reversible upon pH changes. The synergetic effect of selective complexation between PEG block and α‐CD and the pH‐inducible hydrophobic interaction between PLL blocks at pH 10 was believed to be the driving force for the formation of the supramolecular hydrogel. 1H NMR and wide angle X‐ray diffraction (WAXD) were employed to confirm the inclusion complexation between α‐CD and PEG block. Meanwhile, the morphology of the micellized nanoparticles was investigated by transmission electron microscopy (TEM). The thermal stability of inclusion complexes (ICs) was investigated and the rheologic experiment was conducted to reveal the micelle‐gel transition. Such pH‐induced reversible micelle‐gel transition of the supramolecular aggregates may find applications in several fields, for example as advanced biomedical material possessing stimulus‐responsiveness. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 782–790, 2008  相似文献   

11.
A novel kind of graft polymer poly(aspartic acid)‐ethanediamine‐g‐adamantane/methyloxy polyethylene glycol (Pasp‐EDA‐g‐Ad/mPEG) was designed and synthesized for drug delivery in this study. The chemical structure of the prepared polymer was confirmed by proton NMR. The obtained polymer can self‐assemble into micelles which were stable under a physiological environment and displayed pH‐ and β‐cyclodextrin (β‐CD)‐responsive behaviors because of the acid‐labile benzoic imine linkage and hydrophobic adamantine groups in the side chains of the polymer. The doxorubicin (Dox)‐loaded micelles showed a slow release under physiological conditions and a rapid release after exposure to weakly acidic or β‐CD environment. The in vitro cytotoxicity results suggested that the polymer was good at biocompatibility and could remain Dox biologically active. Hence, the Pasp‐EDA‐g‐Ad/mPEG micelles may be applied as promising controlled drug delivery system for hydrophobic antitumor drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1387–1395  相似文献   

12.
In this study, two poly(azomethine ether)s were synthesized and they can form inclusion compounds (ICs) with β‐cyclodextrin (β‐CD). Fourier transform infrared (FTIR) spectroscopy, 1H nuclear magnetic resonance spectroscopy (1H‐NMR), thermogravimetric analysis (TGA), X‐ray diffraction (XRD) have been utilized to observe the formation of polymer‐CD‐ICs. The differentiation in their FTIR spectra may indicate the formation of the inclusion compounds between poly(azomethine ether)s and β‐CD. Compared the 1H‐NMR of polymer‐CD‐ICs with β‐CD, proton signals belonging to both β‐CD and poly(azomethine ether)s can be found in the spectrum. The chemical shift of the protons H‐3, H‐5 has changed after the formation of inclusion compounds, which is perhaps due to the interaction of these protons with polymers. TGA scans showed the much higher decomposition temperatures observed for two polymer‐CD‐ICs may imply that polymer chains included inside the β‐CD's cavity can greatly improve β‐CD's stabilities. The X‐ray diffraction patterns were confirmed to be the new crystal structures.  相似文献   

13.
Thermoresponsive nanoparticles based on the interaction of metallacarboranes, bulky chaotropic and surface‐active anions, and poly(2‐alkyl‐2‐oxazoline) block copolymers were prepared. Recently, the great potential of metallacarboranes have been recognized in biomedicine and many delivery nanosystems have been proposed. However, none of them are thermoresponsive. Therefore, a thermoresponsive block copolymer, poly(2‐methyl‐2‐oxazoline)‐block‐poly(2‐n‐propyl‐2‐oxazoline) (PMeOx–PPrOx), was synthesized to encapsulate metallacarboranes. Light scattering, NMR spectroscopy, isothermal titration calorimetry, and cryogenic TEM were used to characterize all solutions of the formed nanoparticles. The cloud‐point temperature (TCP) of the block copolymer was observed at 30 °C and polymeric micelles formed above this temperature. Cobalt bis(dicarbollide) anion (COSAN) interacts with both polymeric segments. Depending on the COSAN concentration, this affinity influenced the phase transition of the thermoresponsive PPrOx block. The TCP shifted to lower values at a lower COSAN content. At higher COSAN concentrations, the hybrid nanoparticles are fragmented into relatively small pieces. This system is also thermoresponsive, whereby an increase in temperature leads to higher polymer mobility and COSAN release.  相似文献   

14.
PEG-coated β-FeOOH nanoparticles were prepared through electrostatic complex formation of iron oxide nanoparticles with poly(ethylene glycol)-poly(aspartic acid) block copolymer [PEG-P(Asp)] in distilled water. By dynamic light scattering (DLS) measurement, the nanopaticle size was determined to be 70 nm with narrow distribution. The FT-IR and zeta potential experimental results proved that PEG-PAsp molecules bound to the surface of the iron oxide nanoparticles via the coordination between the carboxylic acid residues in the PAsp segment of the block copolymer and the surface Fe of the β-FeOOH nanoparticles. The PEG-coated nanoparticles revealed excellent solubility and stability in aqueous solution as well as in physiological saline. In vivo MRI experiments on tumor-bearing mice demonstrated that the PEG-coated nanoparticles prepared by the current approach achieved an appreciable accumulation into solid tumor, suggesting their potential utility as tumor-selective MRI contrast agents.  相似文献   

15.
PEG-coated β-FeOOH nanoparticles were prepared through electrostatic complex formation of iron oxide nanoparticles with poly(ethylene glycol)-poly(aspartic acid) block copolymer [PEG-P(Asp)] in distilled water. By dynamic light scattering (DLS) measurement, the nanopaticle size was determined to be 70 nm with narrow distribution. The FT-IR and zeta potential experimental results proved that PEG-PAsp molecules bound to the surface of the iron oxide nanoparticles via the coordination between the carboxylic acid residues in the PAsp segment of the block copolymer and the surface Fe of the β-FeOOH nanoparticles. The PEG-coated nanoparticles revealed excellent solubility and stability in aqueous solution as well as in physiological saline. In vivo MRI experiments on tumor-bearing mice demonstrated that the PEG-coated nanoparticles prepared by the current approach achieved an appreciable accumulation into solid tumor, suggesting their potential utility as tumor-selective MRI contrast agents.  相似文献   

16.
A smart targeting drug delivery nanocarrier is successfully constructed based on phototriggered competition of host–guest interaction. The targeting motif, i.e., biotin is first concealed by β‐cyclodextrin (β‐CD) via host–guest interaction. When the nanoparticles are exposed to UV light, the cleavage of photosensitive groups results in the exposure of adamantane (Ad) groups initially located in the interior of nanoassemblies, and β‐CDs capped on biotin ligands can be replaced by Ad because of the higher binding constant between Ad and β‐CD than that between biotin and β‐CD. The competition of host–guest interaction leads to the recovery of targeting capacity of biotin ligands on the nanocarriers. By virtue of photoregulation, the nanocarriers exhibit controllable ligand‐receptor recognition, which is proved by flow cytometry, laser confocal microscopy, and cytotoxicity assay. This strategy has a potential to improve the selectivity and safety of targeting drug delivery systems.  相似文献   

17.
The comparative studies on the miscibility and phase behavior between the blends of linear and star‐shaped poly(2‐methyl‐2‐oxazoline) with poly(vinylidene fluoride) (PVDF) were carried out in this work. The linear poly(2‐methyl‐2‐oxazoline) was synthesized by the ring opening polymerization of 2‐methyl‐2‐oxazoline in the presence of methyl p‐toluenesulfonate (MeOTs) whereas the star‐shaped poly(2‐methyl‐2‐oxazoline) was synthesized with octa(3‐iodopropyl) polyhedral oligomeric silsesquioxane [(IC3H6)8Si8O12, OipPOSS] as an octafunctional initiator. The polymers with different topological structures were characterized by means of Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. It is found that the star‐shaped poly(2‐methyl‐2‐oxazoline) was miscible with poly(vinylidene fluoride) (PVDF), which was evidenced by single glass‐transition temperature behavior and the equilibrium melting‐point depression. Nonetheless, the blends of linear poly(2‐methyl‐2‐oxazoline) with PVDF were phase‐separated. The difference in miscibility was ascribed to the topological effect of PMOx macromolecules on the miscibility. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 942–952, 2006  相似文献   

18.
The effects of addition of β‐cyclodextrin (β‐CD) to the neutral red‐cetyltrimethylammonium bromide (CTAB) associates in pH 7 phosphate buffer solutions were investigated. Addition of β‐CD to neutral red‐CTAB association causes decomposition of the associate by displacement of neutral red with β‐CD. The inclusion complex of CTAB with β‐CD is more stable than that with neutral red. The results indicate that formation of inclusion complex of CTAB with β‐CD prevents its association with neutral red, and inclusion complex formation of β‐CD and neutral red in the presence of CTAB takes place after total consumption of CTAB. The competition of β‐CD and neutral red on the interaction with CTAB can be used for the simple, rapid and sensitive spectrophotometric determination of β‐CD.  相似文献   

19.
Herein, cylindrical molecular bottlebrushes grafted with poly(2‐oxazoline) (POx) as a shaped tunable uni‐molecular nanoparticle were synthesized via the grafting‐onto approach. First, poly(glycidyl methacrylate) (PGMA) backbones with azide pendant units were prepared via reversible addition fragmentation transfer (RAFT) polymerization followed by post‐modification. The degree of polymerization (DP) of the backbones was tuned in a range from 20 to 800. Alkynyl‐terminated POx side chains were synthesized by living cationic ring opening polymerization (LCROP) of 2‐ethyl‐2‐oxazoline (EtOx) and 2‐methyl‐2‐oxazoline (MeOx), respectively. The DP of side chains was varied between 20 and 100. Then, the copper‐catalyzed azide‐alkynyl cycloaddition (CuAAC) click chemistry was conducted with a feed ratio of [alkynyl]:[azide] = 1.2:1 to yield a series of brushes. Depending on the DP of side chains, the grafting density ranged between 47 and 85%. The resulting brushlike nanoparticles exhibited shapes of sphere, rod and worm. Aqueous solutions of PEtOx brushes demonstrated a thermoresponsive behavior as a function of the length of backbones and side chains. Surprisingly, it was found that the lower critical solution temperature of PEtOx brushes increased with a length increase of backbones. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 174–183  相似文献   

20.
Pentacyclic triterpenoids, a class of naturally bioactive products having multiple functional groups, unique chiral centers, rigid skeletons, and good biocompatibility, are ideal building blocks for fabricating versatile supramolecular structures. In this research, the natural pentacyclic triterpenoid glycyrrhetinic acid (GA) was used as a guest molecule for β‐cyclodextrin (β‐CD) to form a GA/β‐CD (1:1) inclusion complex. By means of GA and β‐CD pendant groups in N,N′‐dimethylacrylamide copolymers, a supramolecular polymer hydrogel can be physically cross‐linked by host–guest interactions between GA and β‐CD moieties. Moreover, self‐healing of this hydrogel was observed and confirmed by step‐strain rheological measurements, whereby the maximum storage modulus occurred at a [GA]/[β‐CD] molar ratio of 1:1. Additionally, these polymers displayed outstanding biocompatibility. The introduction of a natural pentacyclic triterpenoid into a hydrogel system not only provides a biocompatible guest–host complementary GA/β‐CD pair, but also makes this hydrogel an attractive candidate for tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号