首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Densities have been measured for the CsCl‐saccharide (D‐glucose, D‐fructose)‐water systems at 298.15 K. These data were used to calculate the apparent molar volume of CsCl (Vφ,E) and the saccharides (Vφ,S), and the infinite dilution apparent molar volume Vφ,E0 and Vφ,S0 in the studied solutions. In addition, the standard transfer volume ΔtVφ,E0 of CsCl from water to aqueous saccharides solutions, and ΔtVφ,S0 of saccharides from water to CsCl solutions have been evaluated and discussed using the structural interaction model. The volumetric interaction parameters for CsCl with saccharide in water were obtained and analyzed by the group additivity principle and the stereochemistry of the saccharide molecules.  相似文献   

2.
Densities for monosaccharide (D-xylose, D-arabinose, D-glucose, D-galactose)–NaI–water solutions were measured at 298.15 K and were used to calculate the apparent molar volumes of these saccharides and NaI. Infinite dilution apparent molar volumes for the saccharides (V,S) in aqueous NaI and those for NaI (V,E) in aqueous saccharide solutions and partial molar volumes of the saccharides (VS) and NaI (VE) at each composition have been evaluated, together with the standard transfer volumes of the saccharides (tr VS) from water to aqueous NaI and those of NaI (trVE) from water to aqueous saccharide solutions. It was shown that the tr VS and trVE values are positive and increase with increasing co-solute molalities. Volumetric parameters indicating the interactions of NaI with saccharides in water were also obtained and applied to explore the interactions between saccharides and NaI in water. A comparison of the ES value for NaI with those for NaCl and NaBr showed that for a given saccharide, except for glucose, the ES value for NaBr is the largest of three sodium halides (NaCl, NaBr and NaI). These were interpreted in terms of the apparent molar electrostriction volumes ( Ve) and the structure interaction model.  相似文献   

3.
Density measurements have been carried out at T=298.15 K for the CsCl–monosaccharide (d-galactose, d-xylose and d-arabinose)–water systems. The apparent molar volume of saccharides Vφ,S in the ternary solutions, the corresponding infinite dilution apparent molar volume Vφ,S, and the standard transfer volume ΔtVφ,S of saccharides from water to aqueous CsCl solutions have been determined. The McMillan–Mayer theory was employed to relate the excess thermodynamic functions to a series of interaction parameters to obtain the volumetric interaction parameters of CsCl with monosaccharide in water. These parameters are interpreted by the group additivity principle and the stereochemistry of these monosaccharide molecules.  相似文献   

4.
The highly stable nitrosyl iron(II) mononuclear complex [Fe(bztpen)(NO)](PF6)2 (bztpen=N‐benzyl‐N,N′,N′‐tris(2‐pyridylmethyl)ethylenediamine) displays an S=1/2?S=3/2 spin crossover (SCO) behavior (T1/2=370 K, ΔH=12.48 kJ mol?1, ΔS=33 J K?1 mol?1) stemming from strong magnetic coupling between the NO radical (S=1/2) and thermally interconverted (S=0?S=2) ferrous spin states. The crystal structure of this robust complex has been investigated in the temperature range 120–420 K affording a detailed picture of how the electronic distribution of the t2g–eg orbitals modulates the structure of the {FeNO}7 bond, providing valuable magneto–structural and spectroscopic correlations and DFT analysis.  相似文献   

5.
利用精密数字密度计测定了298.15和308.15 K甘氨酰甘氨酸在KCl-水和NaCl-水混合溶剂中的密度, 计算了甘氨酰甘氨酸的表观摩尔体积VΦ和极限偏摩尔体积VΦ?, 得到了其由纯水溶剂转移至混合溶剂中的迁移偏摩尔体积ΔtrsVΦ?和理论水化数Nh. 正的迁移偏摩尔体积说明在本文所研究的浓度范围内盐溶液可以提高球形蛋白的结构稳定性. 结果表明, 温度对迁移偏摩尔体积的影响很小; 溶液中离子与甘氨酰甘氨酸带电中心间的相互作用占主导地位. 利用共球交盖模型对结果进行了讨论.  相似文献   

6.
The oxidation of D ‐glucitol and D ‐mannitol by CrVI yields the aldonic acid (and/or the aldonolactone) and CrIII as final products when an excess of alditol over CrVI is used. The redox reaction occurs through a CrVI→CrV→CrIII path, the CrVI→CrV reduction being the slow redox step. The complete rate laws for the redox reactions are expressed by: a) −d[CrVI]/dt {kM2 H [H+]2+kMH [H+]}[mannitol][CrVI], where kM2 H (6.7±0.3)⋅10 M s−1 and kMH (9±2)⋅10 M s−1; b) −d[CrVI]/dt {kG2 H [H+]2+kGH [H+]}[glucitol][CrVI], where kG2 H (8.5±0.2)⋅10 M s−1 and kGH (1.8±0.1)⋅10 M s−1, at 33°. The slow redox steps are preceded by the formation of a CrVI oxy ester with λmax 371 nm, at pH 4.5. In acid medium, intermediate CrV reacts with the substrate faster than CrVI does. The EPR spectra show that five‐ and six‐coordinate oxo‐CrV intermediates are formed, with the alditol or the aldonic acid acting as bidentate ligands. Pentacoordinate oxo‐CrV species are present at any [H+], whereas hexacoordinate ones are observed only at pH<2 and become the dominant species under stronger acidic conditions where rapid decomposition to the redox products occurs. At higher pH, where hexacoordinate oxo‐CrV species are not observed, CrV complexes are stable enough to remain in solution for several days to months.  相似文献   

7.
Methyl (2E,4R)‐4‐hydroxydec‐2‐enoate, methyl (2E,4S)‐4‐hydroxydec‐2‐enoate, and ethyl (±)‐(2E)‐4‐hydroxy[4‐2H]dec‐2‐enoate were chemically synthesized and incubated in the yeast Saccharomyces cerevisiae. Initial C‐chain elongation of these substrates to C12 and, to a lesser extent, C14 fatty acids was observed, followed by γ‐decanolactone formation. Metabolic conversion of methyl (2E,4R)‐4‐hydroxydec‐2‐enoate and methyl (2E,4S)‐4‐hydroxydec‐2‐enoate both led to (4R)‐γ‐decanolactone with >99% ee and 80% ee, respectively. Biotransformation of ethyl (±)‐(2E)‐4‐hydroxy(4‐2H)dec‐2‐enoate yielded (4R)‐γ‐[2H]decanolactone with 61% of the 2H label maintained and in 90% ee indicating a stereoinversion pathway. Electron‐impact mass spectrometry analysis (Fig. 4) of 4‐hydroxydecanoic acid indicated a partial C(4)→C(2) 2H shift. The formation of erythro‐3,4‐dihydroxydecanoic acid and erythro‐3‐hydroxy‐γ‐decanolactone from methyl (2E,4S)‐4‐hydroxydec‐2‐enoate supports a net inversion to (4R)‐γ‐decanolactone via 4‐oxodecanoic acid. As postulated in a previous work, (2E,4S)‐4‐hydroxydec‐2‐enoic acid was shown to be a key intermediate during (4R)‐γ‐decanolactone formation via degradation of (3S,4S)‐dihydroxy fatty acids and precursors by Saccharomyces cerevisiae.  相似文献   

8.
Treatment of (NH4)[Au(D‐Hpen‐S)2](D‐H2pen = D‐penicillamine) with CoCl2·6H2O in an acetate buffer solution, followed by air oxidation, gave neutral AuICoIII and anionic AuI3CoIII2 polynuclear complexes, [Au3Co3(D‐pen‐N,O,S)6]([ 1 ]) and [Au3Co2(D‐pen‐N,S)6]3? ([ 2 ]3?), which were separated by anion‐exchange column chromatography. Complexes [ 1 ] and [ 2 ]3? each formed a single isomer, and their structures were determined by single‐crystal X‐ray crystallography. In [ 1 ], each of three [Au(D‐pen‐S)2]3?metalloligands coordinates to two CoIII ions in a bis‐tridentate‐N,O,S mode to form a cyclic AuI3CoIII3 hexanuclear structure, in which three [Co(D‐pen‐N,O,S)2]? octahedral units and six bridging S atoms adopt trans(O) geometrical and R chiral configurations, respectively. In [ 2 ]3?, each of three [Au(D‐pen‐S)2]3? metalloligands coordinates to two CoIII ions in a bis‐bidentate‐N,S mode to form a AuI3CoIII2 pentanuclear structure, in which two [Co(D‐pen‐N,S)3]3? units and six bridging S atoms adopt ∧ and R chiral configurations, respectively.  相似文献   

9.
The influence of mono‐ and multiple substituent effect on the reduction potential (E0) of 1,3,6‐triphenyl fulvenes is investigated using B3LYP‐SMD/6‐311+G(d,p) level density functional theory. The molecular electrostatic potential (MESP) minimum at the fulvene π‐system (Vmin) and the change in MESP at any of the fulvene carbon atoms (ΔVC) for both neutral and reduced forms are used as excellent measures of substituent effect from the para and meta positions of the 1,3 and 6‐phenyl moieties. Substitution at 6‐phenyl para position has led to significant change in E0 than any other positions. By applying the additivity rule of substituent effects, an equation in ΔVC is derived to predict E0 for multiply substituted fulvenes. Further, E0 is predicted for a set of 2000 hexa‐substituted fulvene derivatives where the substituents and their positions in the system are chosen in a random way. The calculated E0 agreed very well with the experimental E0 reported by Godman et al. Predicting E0 solely by substituent effect offers a simple and powerful way to select suitable combinations of substituents on fulvene system for light harvesting applications. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
Pressure effects on the two‐site jumping of sodium and potassium cations in a 2,5‐di‐tert‐butyl‐1,4‐benzoquinone ion pair have been studied using a high‐pressure EPR technique. The rate constants of the intramolecular and intermolecular migrations for Na+ and K+ were determined from an EPR spectral simulation. The migration rates were found to be accelerated by increasing the external pressure. Using the pressure dependence of the migration rates, we estimated the activation volumes of the intramolecular (ΔV1?) and intermolecular (ΔV2?) processes for the Na+ and K+ migrations: ΔV1? = ?5.3 cm3 mol?1 and ΔV2? = ?29 cm3 mol?1 for Na+, and ΔV1? = ?8.3 cm3 mol?1 and ΔV2? = ?0.85 cm3 mol?1 for K+. Based on the results, the mechanisms for the two‐site jumping of Na+ and K+ are discussed in terms of volume. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 397–401, 2001  相似文献   

11.
The apparent molar volumes (Vm,2) and relative viscosities (ηr) at T=(298.15 and 308.15) K have been obtained for glycine, dl-α-alanine, and dl-α-amino-butyric acid in aqueous sodium caproate solutions from measurements of density and the flow time. The standard partial molar volumes (Vm,2), standard volumes of transfer (ΔtV), the viscosity B-coefficients, and the activation thermodynamic quantities (Δμ2∘≠ and ΔS2∘≠) of viscous flow have been calculated for the amino acids. It is shown that the standard partial molar volumes, viscosity B-coefficients, and activation free energies for viscous flow increase with increasing number of carbon atoms in the alkyl chain of the amino acids. An increase in Vm,2 and ΔtV with increasing electrolyte concentrations have been explained due to the interactions of sodium caproate with the charged center of zwitterions for the amino acids. A comparison of the Vm,2 values for glycine, dl-α-alanine, and dl-α-aminon-n-butyric acid in different aqueous salts solutions showed that carboxylate ions have stronger interactions with amino acid than chloride, thiocyanate, and nitrate ions. Results of viscosity are discussed in terms of changes in solvent structure.  相似文献   

12.
Kinetic measurements for the thermal rearrangement of 2,2‐diphenyl‐1‐[(E)‐styryl]cyclopropane ( 22a ) to 3,4,4‐triphenylcyclopent‐1‐ene ( 23a ) in decalin furnished ΔH =31.0±1.2 kcal mol?1 and ΔS =?6.0±2.6 e.u. The lowering of ΔH by 20 kcal mol?1, compared with the rearrangement of the vinylcyclopropane parent, is ascribed to the stabilization of a transition structure (TS) with allylic diradical character. The racemization of (+)‐(S)‐ 22a proceeds with ΔH =28.2±0.8 kcal mol?1 and ΔS =?5±2 e.u., and is at 150° 106 times faster than the rearrangement. Seven further 1‐(2‐arylethenyl)‐2,2‐diphenylcyclopropanes 22 , (E)‐ and (Z)‐isomers, were synthesized and characterized. The (E)‐compounds showed only modest substituent influence in their krac (at 119.4°) and kisom (at 159.3°) values. The lack of solvent dependence of rate opposes charge separation in the TS, but a linear relation of log krac with log p.r.f., i.e., partial rate factors of radical phenylations of ArH, agrees with a diradical TS. The ring‐opening of the preponderant s‐trans‐conformation of 22 gives rise to the 1‐exo‐phenylallyl radical 26 that bears the diphenylethyl radical in 3‐exo‐position, and is responsible for racemization. The 1‐exo‐3‐endo‐substituted allylic diradical 27 arises from the minor s‐gauche‐conformation of 22 and is capable of closing the three‐ or the five‐membered ring, 22 or 23 , respectively. The discussion centers on the question whether the allylic diradical is an intermediate or merely a TS. Quantum‐chemical calculations by Houk et al. (1997) for the parent vinylcyclopropane reveal the lack of an intermediate. Can the conjugation of the allylic diradical with three Ph groups carve the well of an intermediate?  相似文献   

13.
The cloud‐point temperatures (Tclo's) of poly(N‐isopropyl acrylamide) (PNIPAM)/water solutions with NaCl, NaBr, or NaI were measured. All these salts reduced the Tclo's of PNIPAM/water solutions to different extents, in the following order: NaCl > NaBr > NaI. The higher the concentration of the added salt was, the more greatly Tclo dropped. A dynamic viscoelasticity investigation of the PNIPAM/water solutions with the salts indicated that during phase separation, the system changed from a homogeneous fluid into a physically crosslinked network, and the addition of salts also reduced the temperature at which this change began. The gelation temperature (Tgel) and the scaling exponent of the PNIPAM/water solutions with NaBr were obtained with dynamic scaling theory, and Tgel was found to be close to Tclo. That the addition of salts to the solution decreased Tclo and Tgel to the same extent further proved that the network structure was formed with the phase separation in the PNIPAM/water solutions. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 901–907, 2001  相似文献   

14.
Product ion yields in postsource decay and time‐resolved photodissociation at 193 and 266 nm were measured for some peptide ions with lysine ([KF6 + H]+, [F6K + H]+, and [F3KF3 + H]+) formed by matrix‐assisted laser desorption ionization. The critical energy (E0) and entropy (ΔS?) were determined by RRKM fitting of the data. The results were similar to those found previously for peptide ions with histidine. To summarize, the presence of a basic residue, histidine or lysine, inside a peptide ion retarded its dissociation by lowering ΔS?. On the basis of highly negative ΔS?, presence of intramolecular interaction involving a basic group in the transition structure was proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The kinetics of the interaction of adenosine with cis‐[Pt(cis‐dach)(OH2)2]2+ (dach = diaminocyclohexane) was studied spectrophotometrically as a function of [cis‐[Pt(cis‐dach)(OH2)2]2+], [adenosine], and temperature at a particular pH (4.0), where the substrate complex exists predominantly as the diaqua species and the ligand adenosine exists as a neutral molecule. The substitution reaction shows two consecutive steps: the first is the ligand‐assisted anation followed by a chelation step. The activation parameters for both the steps have been evaluated using Eyring equation. The low negative value of ΔH1 (43.1 ± 1.3 kJ mol?1) and the large negative value of ΔS1 (?177 ± 4 J K?1 mol?1) along with ΔH2 (47.9 ± 1.8 kJ mol?1) and ΔS2 (?181 ± 6 J K?1 mol?1) indicate an associative mode of activation for both the aqua ligand substitution processes. The kinetic study was substantiated by infrared and electrospray ionization mass spectroscopic analysis. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 219–229, 2011  相似文献   

16.
A density functional theory study on olefins with five‐membered monocyclic 4n and 4n+2 π‐electron substituents (C4H3X; X=CH+, SiH+, BH, AlH, CH2, SiH2, O, S, NH, and CH?) was performed to assess the connection between the degree of substituent (anti)aromaticity and the profile of the lowest triplet‐state (T1) potential‐energy surface (PES) for twisting about olefinic C?C bonds. It exploited both Hückel’s rule on aromaticity in the closed‐shell singlet ground state (S0) and Baird’s rule on aromaticity in the lowest ππ* excited triplet state. The compounds CH2?CH(C4H3X) were categorized as set A and set B olefins depending on which carbon atom (C2 or C3) of the C4H3X ring is bonded to the olefin. The degree of substituent (anti)aromaticity goes from strongly S0‐antiaromatic/T1‐aromatic (C5H4+) to strongly S0‐aromatic/T1‐ antiaromatic (C5H4?). Our hypothesis is that the shapes of the T1 PESs, as given by the energy differences between planar and perpendicularly twisted olefin structures in T1E(T1)], smoothly follow the changes in substituent (anti)aromaticity. Indeed, correlations between ΔE(T1) and the (anti)aromaticity changes of the C4H3X groups, as measured by the zz‐tensor component of the nucleus‐independent chemical shift ΔNICS(T1;1)zz, are found both for sets A and B separately (linear fits; r2=0.949 and 0.851, respectively) and for the two sets combined (linear fit; r2=0.851). For sets A and B combined, strong correlations are also found between ΔE(T1) and the degree of S0 (anti)aromaticity as determined by NICS(S0,1)zz (sigmoidal fit; r2=0.963), as well as between the T1 energies of the planar olefins and NICS(S0,1)zz (linear fit; r2=0.939). Thus, careful tuning of substituent (anti)aromaticity allows for design of small olefins with T1 PESs suitable for adiabatic Z/E photoisomerization.  相似文献   

17.
The polymerizations of α‐ethyl β‐N‐(α′‐methylbenzyl)itaconamates carrying (RS)‐ and (S)‐α‐methylbenzylaminocarbonyl groups (RS‐EMBI and S‐EMBI) with dimethyl 2,2′‐azobisisobutyrate (MAIB) were studied in methanol (MeOH) and in benzene kinetically and with electron spin resonance (ESR) spectroscopy. The initial polymerization rate (Rp) at 60 °C was given by Rp = k[MAIB]0.58 ± 0.05[RS‐EMBI]2.4 ± 0.l and Rp = k[MAIB]0.61 ± 0.05[S‐EMBI]2.3 ± 0.l in MeOH and Rp = k[MAIB]0.54 ± 0.05[RS‐EMBI]1.7 ± 0.l in benzene. The rate constants of initiation (kdf), propagation (kp), and termination (kt) as elementary reactions were estimated by ESR, where kd is the rate constant of MAIB decomposition and f is the initiator efficiency. The kp values of RS‐EMBI (0.50–1.27 L/mol s) and S‐EMBI (0.42–1.32 L/mol s) in MeOH increased with increasing monomer concentrations, whereas the kt values (0.20?7.78 × 105 L/mol s for RS‐EMBI and 0.18?6.27 × 105 L/mol s for S‐EMBI) decreased with increasing monomer concentrations. Such relations of Rp with kp and kt were responsible for the unusually high dependence of Rp on the monomer concentration. The activation energies of the elementary reactions were also determined from the values of kdf, kp, and kt at different temperatures. Rp and kp of RS‐EMBI and S‐EMBI in benzene were considerably higher than those in MeOH. Rp of RS‐EMBI was somewhat higher than that of S‐EMBI in both MeOH and benzene. Such effects of the kinds of solvents and monomers on Rp were explicable in terms of the different monomer associations, as analyzed by 1H NMR. The copolymerization of RS‐EMBI with styrene was examined at 60 °C in benzene. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1819–1830, 2003  相似文献   

18.
(all‐E)‐5,6‐Diepikarpoxanthin (=(all‐E,3S,5S,6S,3′R)‐5,6‐dihydro‐β,β‐carotene‐3,5,6,3′‐tetrol; 1 ) was submitted to thermal isomerization and I2‐catalyzed photoisomerization. The structures of the main products, i.e. (9Z)‐ ( 2 ), (9′Z)‐ ( 3 ), (13Z)‐ ( 4 ), (13′Z)‐ ( 5 ), and (15Z)‐5,6‐diepikarpoxanthin ( 6 ), were determined by their UV/VIS, CD, 1H‐NMR, and mass spectra. In addition, (9Z,13′Z)‐ or (13Z,9′Z)‐ ( 7 ), (9Z,9′Z)‐ ( 8 ), and (9Z,13Z)‐ or (9′Z,13′Z)‐5,6‐diepikarpoxanthin ( 9 ) were tentatively identified as minor products of the I2‐catalyzed photoisomerization.  相似文献   

19.
Vanadium chemistry is of interest due its biological relevance and medical applications. In particular, the interactions of high‐valent vanadium ions with sulfur‐containing biologically important molecules, such as cysteine and glutathione, might be related to the redox conversion of vanadium in ascidians, the function of amavadin (a vanadium‐containing anion) and the antidiabetic behaviour of vanadium compounds. A mechanistic understanding of these aspects is important. In an effort to investigate high‐valent vanadium–sulfur chemistry, we have synthesized and characterized the non‐oxo divanadium(IV) complex salt tetraphenylphosphonium tri‐μ‐<!?tlsb=‐0.11pt>methanolato‐κ6O:O‐bis({tris[2‐sulfanidyl‐3‐(trimethylsilyl)phenyl]phosphane‐κ4P,S,S′,S′′}vanadium(IV)) methanol disolvate, (C24H20P)[VIV2(μ‐OCH3)3(C27H36PS3)2]·2CH3OH. Two VIV metal centres are bridged by three methanolate ligands, giving a C2‐symmetric V2(μ‐OMe)3 core structure. Each VIV centre adopts a monocapped trigonal antiprismatic geometry, with the P atom situated in the capping position and the three S atoms and three O atoms forming two triangular faces of the trigonal antiprism. The magnetic data indicate a paramagnetic nature of the salt, with an S = 1 spin state.  相似文献   

20.
The constant-volume combustion energy, △cU (DADE, s, 298.15 K), the thermal behavior, and kinetics and mechanism of the exothermic decomposition reaction of 1,1-diamino-2,2-dinitroethylene (DADE) have been investigated by a precise rotating bomb calorimeter, TG-DTG, DSC, rapid-scan fourier transform infrared (RSFT-IR) spectroscopy and T-jump/FTIR, respectively. The value of △cHm (DADE, s, 298.15 K) was determined as (-8518.09±4.59) j·g^-1. Its standard enthalpy of combustion, △cU (DADE, s, 298.15 K), and standard enthalpy of formation, △fHm (DADE, s, 298.15 K) were calculated to be (-1254.00±0.68) and (- 103.98±0.73) kJ·mol^-1, respectively The kinetic parameters (the apparent activation energy Ea and pre-exponential factor A) of the first exothermic decomposition reaction in a temperature-programmed mode obtained by Kissinger's method and Ozawa's method, were Ek=344.35 kJ·mol^-1, AR= 1034.50 S^-1 and Eo=335.32 kJ·mol^-1, respectively. The critical temperatures of thermal explosion of DADE were 206.98 and 207.08 ℃ by different methods. Information was obtained on its thermolysis detected by RSFT-IR and T-jump/FTIR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号