首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laboratory study was performed to investigate the composition of secondary organic aerosol (SOA) products from photooxidation of the aromatic hydrocarbon p‐xylene. The experiments were conducted by irradiating p‐xylene/CH3ONO/NO/air mixtures in a home‐made smog chamber. The aerosol time‐of‐flight mass spectrometer (ATOFMS) was used to measure the size and the chemical composition of individual secondary organic aerosol particles in real‐time. According to a large number of single aerosol diameters and mass spectra, the size distribution and chemical composition of SOA were determined statistically. Experimental results showed that aerosol created by p‐xylene photooxidation is predominantly in the form of fine particles, which have diameters less than 2.5 μm (i.e. PM2.5), and aromatic aldehyde, unsaturated dicarbonys, hydroxyl dicarbonys, and organic acid are major product components in the SOA after 2 hours photooxidation. After aging for more than 8 hours, about 10% of the particle mass consists of oligomers with a molecular mass up to 600 daltons. The possible reaction mechanisms leading to these products are also proposed.  相似文献   

2.
在自制的烟雾腔内,研究羟基自由基(OH·)启动的乙苯的光氧化反应和一系列后续反应,产生了二次有机气溶胶. 采用空气动力学直径粒谱分析仪分析了气溶胶粒子的尺寸分布;并用自制的气溶胶飞行时间质谱仪快速、实时地测量了单个二次有机气溶胶粒子的分子组分. 初步探讨了这些组分的可能反应机理.  相似文献   

3.
The photooxidation of toluene is a potential source of secondary organic aerosol (SOA) in urban air, but only a small portion of the compounds present in SOA have been identified. In this study, we analyzed the chemical compositions of SOA produced by photoirradiation of the toluene/NOx/air system in laboratory chamber experiments by a combination of liquid chromatography-mass spectrometry, hybrid high-performance liquid chromatography-mass spectrometry, and iodometry-spectrophotometry. The dependence of the chemical composition on the initial NOx concentration was examined at initial NO concentrations ([NO]0) of 0.2 and 1 ppmv. Fifteen semivolatile products, including aromatic and ring-cleavage compounds, were quantified. However, the quantified products comprised only a small portion ( approximately 1 wt %) of the total aerosol mass. The total SOA yield ( approximately 13 wt %), the ratio of organic peroxides to total SOA mass ( approximately 17 wt %), and the density of SOA ( approximately 1.4 g cm-3) were independent of the NOx level, suggesting that the reaction mechanisms of the formation of major SOA products at [NO]0 = 0.2 and 1 ppmv are essentially the same. The negative-ion mass spectra of SOA samples showed that ion signals attributed to hemiacetal oligomers and/or decomposition products of peroxy hemiacetal oligomers were detected in the range of mass-to-charge ratios (m/z) between 200 and 500. The highest signals were detected at m/z = 155 and 177, and these were tentatively assigned to C7 unsaturated oxacyclic oxocarboxylic acids and C7 unsaturated oxacyclic dicarboxylic acids, respectively. We conclude that the major chemical components of the aerosol are hemiacetal and peroxy hemiacetal oligomers and low-molecular-weight dicarboxylic acids.  相似文献   

4.
The composition of products formed from photooxidation of the aromatic hydrocarbon toluene was investigated. The OH-initiated photooxidation experiments were conducted by irradiating toluene/CH3ONO/NO/air mixtures in a smog chamber, the gaseous products were detected under the supersonic beam conditions by utilizing vacuum ultraviolet pho-toionization mass spectrometer using synchrotron radiation in real-time. And an aerosol time-of-flight mass spectrometer was used to provide on-line measurements of the individ-ual secondary organic aerosol particle resulting from irradiating toluene. The experimen-tal results demonstrated that there were some differences between the gaseous products and that of particle-phase, the products of glyoxal, 2-hydroxyl-3-oxo-butanal, nitrotoluene, and methyl-nitrophenol only existed in the particle-phase. However, furane, methylglyoxal, 2-methylfurane, benzaldehyde, cresol, and benzoic acid were the predominant photooxidation products in both the gas phase and particle phase.  相似文献   

5.
Recent work in our laboratory has shown that the photooxidation of isoprene (2-methyl-1,3-butadiene, C(5)H(8)) leads to the formation of secondary organic aerosol (SOA). In the current study, the chemical composition of SOA from the photooxidation of isoprene over the full range of NO(x) conditions is investigated through a series of controlled laboratory chamber experiments. SOA composition is studied using a wide range of experimental techniques: electrospray ionization-mass spectrometry, matrix-assisted laser desorption ionization-mass spectrometry, high-resolution mass spectrometry, online aerosol mass spectrometry, gas chromatography/mass spectrometry, and an iodometric-spectroscopic method. Oligomerization was observed to be an important SOA formation pathway in all cases; however, the nature of the oligomers depends strongly on the NO(x) level, with acidic products formed under high-NO(x) conditions only. We present, to our knowledge, the first evidence of particle-phase esterification reactions in SOA, where the further oxidation of the isoprene oxidation product methacrolein under high-NO(x) conditions produces polyesters involving 2-methylglyceric acid as a key monomeric unit. These oligomers comprise approximately 22-34% of the high-NO(x) SOA mass. Under low-NO(x) conditions, organic peroxides contribute significantly to the low-NO(x) SOA mass (approximately 61% when SOA forms by nucleation and approximately 25-30% in the presence of seed particles). The contribution of organic peroxides in the SOA decreases with time, indicating photochemical aging. Hemiacetal dimers are found to form from C(5) alkene triols and 2-methyltetrols under low-NO(x) conditions; these compounds are also found in aerosol collected from the Amazonian rainforest, demonstrating the atmospheric relevance of these low-NO(x) chamber experiments.  相似文献   

6.
Aromatic hydrocarbons are air pollutants in urban atmosphere and mainly from anthropogenic sources, i.e., emission from automotive exhaust and productive process of industry, and they constitute an important fraction of total volatile organic compounds (VOCs). Photochemical ozone and secondary organic aerosols (SOA) could be formed from the photochemical proc- esses of aromatic hydrocarbons. SOA may impact visibility of air, formation of clouds, change of the climate, and human health serio…  相似文献   

7.
《中国化学会会志》2018,65(5):578-590
A laboratory study was carried out to investigate the chemical composition of aged aromatic secondary organic aerosol (SOA) formed from the photoxidation of p‐xylene in the presence of ammonia (NH3). The experiments were conducted by irradiating p‐xylene/CH3ONO/NH3 air mixtures without and with NO in a home‐made smog chamber. The particulate products of aged p‐ xylene SOA in the presence of NH3 were measured by UV–vis spectrophotometry, attenuated total reflectance Fourier transform infrared (ATR‐FTIR) spectroscopy, and aerosol laser time‐of‐flight mass spectrometry (ALTOFMS) coupled with the fuzzy C‐means (FCM) clustering algorithm. The experimental results show that NH3 does not alter the gas–particle partitioning in the photoxidation of p‐xylene without NO and that 2,5‐dimethylphenol is the predominant NH3‐aged p‐xylene SOA without NO. However, NH3 has a significant promotional effect on the formation of organonitrogen compounds in the OH‐initiated oxidation of p‐xylene with NO. Organic ammonium salts such as ammonium glyoxylate and p‐methyl ammonium benzoate, which are formed from NH3 reactions with gaseous organic acids, were detected as the major particulate organonitrogen products of NH3‐aged p‐xylene SOA with NO. 1H‐Imidazole, 4‐methyl‐1H‐imidazole, and other imidazole products of the heterogeneous reactions between NH3 and dialdehydes of p‐xylene SOA were newly measured. The possible reaction mechanisms leading to these organonitrogen products are also discussed and proposed. The formation of imidazole products suggests that some ambient particles containing organonitrogen compounds may be the result of this mechanism. The results of this study may provide valuable information for discussing anthropogenic SOA aging mechanisms.  相似文献   

8.
A real-time analysis of secondary organic aerosol (SOA) particles formed from cyclohexene ozonolysis in a smog chamber was performed using a laser-ionization single-particle aerosol mass spectrometer (LISPA-MS). The instrument obtains both size and chemical compositions of individual aerosol particles with a high time-resolution (approximately 2 s at the maximum). Both positive and negative-ion mass spectra are obtained. Standard particles generated from dicarboxylic acid solutions using an atomizer were also analyzed. For both standard and SOA particles, the negative-ion mass spectra provided information about the molecular weights of the organic compounds in the particles, since the intense ions in the negative-ion mass spectra are mainly attributable to the molecular-related ions [M-H]-. It was demonstrated that the real-time single-particle analysis of SOA particles by the LISPA-MS technique can reveal the formation and transformation processes of SOA particle in smog chambers.  相似文献   

9.
On‐line ion trap mass spectrometry (ITMS) enables the real‐time characterization of reaction products of secondary organic aerosol (SOA). The analysis was conducted by directly introducing the aerosol particles into the ion source. Positive‐ion chemical ionization at atmospheric pressure (APCI(+)) ITMS was used for the characterization of constituents of biogenic SOA produced in reaction‐chamber experiments. APCI in the positive‐ion mode usually enables the detection of [M+H]+ ions of the individual SOA components. In this paper the identification of organic peroxides from biogenic volatile organic compounds (VOCs) by on‐line APCI‐ITMS is presented. Organic peroxides containing a hydroperoxy group, generated by gas‐phase ozonolysis of monoterpenes (α‐pinene and β‐pinene) and sesquiterpenes (α‐cedrene and α‐copaene), could be detected via on‐line APCI(+)‐MS/MS experiments. A characteristic neutral loss of 34 Da (hydrogen peroxide, H2O2) in the on‐line MS/MS spectra is a clear indication for the existence of an organic peroxide, containing a hydroperoxy functional group. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
ondary organic aerosol (SOA) formation from OH-initiated photo-oxidation of isoprene in the presence of organic seed aerosol. The dependence of the size distributions of SOA on both the level of pre-existing particles generated in situ from the photo-oxidation of trace hydrocarbons of indoor atmosphere and the concentration of precursor, has been investi-gated. It was shown that in the presence of high-level seed aerosol and low-level isoprene (typical urban atmospheric conditions), particle growth due to condensation of secondary organic products on pre-existing particles dominated; while in the presence of low-level seed aerosol and comparatively high-level isoprene (typical atmospheric conditions in rural re-gion), bimodal structures appeared in the size distributions of SOA, which corresponded to new particle formation resulting from homogeneous nucleation and particle growth due to condensation of secondary organic products on the per-existing particles respectively. The effects of concentrations of organic seed particles on SOA were also investigated. The particle size distributions evolutions as well as the corresponding formation rates of new particles indifferent conditions were also estimated.  相似文献   

11.
为了从本质上认识和了解大气氧化反应进程以及二次有机气溶胶的形成机制,设计并搭建了一套实验室模拟烟雾箱系统.将质子转移反应质谱、同步辐射光电离质谱及气溶胶激光飞行时间质谱等特色质谱检测系统与烟雾箱结合,用于大气氧化反应气相和粒子相产物的定量与定性分析.通过一系列表征实验获得了该系统的基本参数,如烟雾箱内温度和光强特征,气体化合物和颗粒物的壁损耗速率,零空气的背景反应性及实验结果的可重复性.臭氧氧化α-蒎烯定量化实验和OH启动异戊二烯光氧化反应的定性检测结果进一步表明了该系统能够满足大气化学反应过程中气相和粒子相化学成分的定性分析及二次有机气溶胶的定量化研究的需要.  相似文献   

12.
The extended photooxidation of and secondary organic aerosol (SOA) formation from dodecane (C(12)H(26)) under low-NO(x) conditions, such that RO(2) + HO(2) chemistry dominates the fate of the peroxy radicals, is studied in the Caltech Environmental Chamber based on simultaneous gas and particle-phase measurements. A mechanism simulation indicates that greater than 67% of the initial carbon ends up as fourth and higher generation products after 10 h of reaction, and simulated trends for seven species are supported by gas-phase measurements. A characteristic set of hydroperoxide gas-phase products are formed under these low-NO(x) conditions. Production of semivolatile hydroperoxide species within three generations of chemistry is consistent with observed initial aerosol growth. Continued gas-phase oxidation of these semivolatile species produces multifunctional low volatility compounds. This study elucidates the complex evolution of the gas-phase photooxidation chemistry and subsequent SOA formation through a novel approach comparing molecular level information from a chemical ionization mass spectrometer (CIMS) and high m/z ion fragments from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Combination of these techniques reveals that particle-phase chemistry leading to peroxyhemiacetal formation is the likely mechanism by which these species are incorporated in the particle phase. The current findings are relevant toward understanding atmospheric SOA formation and aging from the "unresolved complex mixture," comprising, in part, long-chain alkanes.  相似文献   

13.
Recently, it has been proposed (M. Claeys et al., Science 2004; 303: 1173) that the atmospheric OH-radical-mediated photooxidation of isoprene is a source of two major secondary organic aerosol (SOA) components, that is, 2-methylthreitol and 2-methylerythritol. These diastereoisomeric tetrols, which were characterized for the first time in the fine size fraction (<2.5 microm aerodynamic diameter) of aerosols collected in the Amazon rain forest during the wet season, were proposed to enhance the capability of the aerosols to act as cloud-condensation nuclei. In the present study, we performed the oxidation of isoprene in aqueous solution under conditions that attempted to mimic atmospheric OH-radical-induced photooxidization, and monitored and characterized on-line the reaction products via electrospray ionization mass (and tandem mass) spectrometry in the negative ion mode. The results show that the reaction of isoprene with photo- or chemically generated hydroxyl radicals indeed yields 2-methyltetrols. Other polyols were also detected, and they may therefore be considered as plausible SOA components eventually formed in normal or more extreme OH-radical-mediated photooxidation of biogenic isoprene.  相似文献   

14.
Secondary organic aerosol (SOA) is one of the major components of aerosols in the atmosphere and has not been well understood so far. Due to the complex chemical composition of organic aerosols, the identification of SOA has been a hotspot and difficult issue in the field of aerosol study. This study attempts to quantitatively identify SOA in winter of Shenzhen based on positive matrix factorization (PMF) analysis. Major sources were resolved and SOA was identified subsequently according to the characteristic ion fragments measured by highly time-resolved aerosol mass spectrometer measurement. It showed that in the winter of Shenzhen the average SOA concentration was 9.41 ± 6.33 μg/m3, accounting for 39.9 ± 21.8% of the total organic mass. Compared with primary organic aerosol (POA), the SOA concentrations had no large variation, suggestive of characteristics of regional secondary pollutants. The ratio of SOA/BC had pronounced diurnal variation, similar to that of O x (O3+NO2), indicating SOA formation was significantly controlled by activity of photochemistry in the atmosphere. The most effective period for SOA formation was from 9 am ~3 pm since the SOA/BC ratio increased by 122% during this period. This study provides a new technical method and a new idea for SOA investigation.  相似文献   

15.
二次有机气溶胶形成的化学过程   总被引:6,自引:0,他引:6  
挥发性有机化合物的光氧化过程和光氧化产物的气态/粒子态均分过程是二次有机气溶胶形成的重要原因.二次有机气溶胶形成的化学机理主要涉及到挥发性有机化合物的光氧化过程及其一系列的后续反应,它们导致了对流层中臭氧浓度的增加和二次有机气溶胶的形成.本文将重点介绍二次有机气溶胶形成的重要化学过程和量子化学计算研究.  相似文献   

16.
利用烟雾箱模拟装置,研究了异戊二烯与OH自由基反应的二次有机气溶胶(SOA)的生成.反应中生成的气相产物通过质子转移反应质谱仪(PTR-MS)测定,SOA的浓度及粒径谱分布通过高分辨率粒径谱仪(EEPS3090)测定.研究表明:甲基丙烯醛(MAC)/甲基乙烯基酮(MVK)、乙醛、甲醛、甲醇、甲酸/乙醇、乙醇醛、甲基乙二醛、丙酮/丙醛等为主要气相产物,各组实验中MAC/MVK和乙醛浓度达到最大时,其产率分别介于13.78%~37.72%和5.38%~9.34%(以C计)范围内;SOA生成量及其中值粒径随异戊二烯反应量的增加而增加,气相物质稳定后,SOA产率在5.6%~11.7%范围内,粒径在22~165nm范围内.  相似文献   

17.
二次有机气溶胶(SOA)是大气气溶胶十分重要的组成部分,也是目前人们认识最为薄弱的气溶胶组分.由于有机气溶胶化学组成的复杂性,对SOA进行有效的识别和估算一直是国际气溶胶研究领域的热点和难点问题.本研究尝试使用一种新方法来定量识别深圳冬季大气中的SOA:利用气溶胶质谱仪在线观测的高时间分辨率优势和质谱中的特征碎片离子,应用正定矩阵因子解析(PMF)模型对细粒子组分的主要来源进行解析,识别出其中的二次有机物.结果表明:深圳冬季大气细粒子中SOA浓度平均为9.41±6.33μg/m3,占总有机物质量的39.9±21.8%;相比于一次有机气溶胶(POA),SOA浓度水平变化较为平缓,体现了区域性二次污染物的特征.SOA/BC比值具有鲜明的日变化规律,且与Ox(O3+NO2)的日变化规律相似,说明SOA的生成过程显著地受控于大气光化学活性.深圳冬季大气SOA生成最活跃的时段约为9~15时,期间SOA/BC比值增长了122%.本文为研究我国大气二次有机气溶胶提供了一种新的技术方法和思路.  相似文献   

18.
In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.  相似文献   

19.
Exploratory evidence from our laboratories shows that acidic surfaces on atmospheric aerosols lead to very real and potentially multifold increases in secondary organic aerosol (SOA) mass and build-up of stabilized nonvolatile organic matter as particles age. One possible explanation for these heterogeneous processes are the acid-catalyzed (e.g., H2SO4 and HNO3) reactions of atmospheric multifunctional organic species (e.g., multifunctional carbonyl compounds) that are accommodated onto the particle phase from the gas phase. Volatile organic hydrocarbons (VOCs) from biogenic sources (e.g., terpenoids) and anthropogenic sources (aromatics) are significant precursors for multifunctional organic species. The sulfur content of fossil fuels, which is released into the atmosphere as SO2, results in the formation of secondary inorganic acidic aerosols or indigenous acidic soot particles (e.g., diesel soot). The predominance of SOAs contributing to PM2.5 (particulate matter, that is, 2.5 microm or smaller than 2.5 microm), and the prevalence of sulfur in fossil fuels suggests that interactions between these sources could be considerable. This study outlines a systematic approach for exploring the fundamental chemistry of these particle-phase heterogeneous reactions. If acid-catalyzed heterogeneous reactions of SOA products are included in next-generation models, the predicted SOA formation will be much greater and have a much larger impact on climate-forcing effects than we now predict. The combined study of both organic and inorganic acids will also enable greater understanding of the adverse health effects in biological pulmonary organs exposed to particles.  相似文献   

20.
This article summarizes and compares the analysis of the surfaces of natural aerosol particles from three different forest environments by vibrational sum frequency generation. The experiments were carried out directly on filter and impactor substrates, without the need for sample preconcentration, manipulation, or destruction. We discuss the important first steps leading to secondary organic aerosol (SOA) particle nucleation and growth from terpene oxidation by showing that, as viewed by coherent vibrational spectroscopy, the chemical composition of the surface region of aerosol particles having sizes of 1 μm and lower appears to be close to size-invariant. We also discuss the concept of molecular chirality as a chemical marker that could be useful for quantifying how chemical constituents in the SOA gas phase and the SOA particle phase are related in time. Finally, we describe how the combination of multiple disciplines, such as aerosol science, advanced vibrational spectroscopy, meteorology, and chemistry can be highly informative when studying particles collected during atmospheric chemistry field campaigns, such as those carried out during HUMPPA-COPEC-2010, AMAZE-08, or BEARPEX-2009, and when they are compared to results from synthetic model systems such as particles from the Harvard Environmental Chamber (HEC). Discussions regarding the future of SOA chemical analysis approaches are given in the context of providing a path toward detailed spectroscopic assignments of SOA particle precursors and constituents and to fast-forward, in terms of mechanistic studies, through the SOA particle formation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号