首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
Experiments were performed on spout characteristics of a cylindrical spout-fluidized bed (I.D. = 10 cm) with different static heights and two materials (Al2O3 and high density polyethylene). Results of minimum spouting velocity obtained in this study were compared with reported correlations for both spouted and spout-fluidized beds. Considerable discrepancies were found between the values obtained using different model equations as well as with respect to experimental results. Based on the Mathur–Gishler correlation, a new correlation is proposed for calculating the minimum spouting velocity that introduces the ratio U/Umf. It was found that the minimum spouting velocity decreases with increasing fluidizing gas velocity (U/Umf). The pressure drop at the point of minimum spouting velocity is also correlated using this dimensionless group and is presented in this work. This investigation demonstrates that the use of correlations reported in the literature that focus primarily on conical bottom spouted beds are not applicable to flat-bottom spouted and spout-fluidized beds.  相似文献   

2.
Foxtail millet (Setaria italica) is one of the most valuable species in economic terms in the genus Setaria and plays an important role in human nutrition, animal feed, and agriculture. The present study described chemical, physical, and quality aspects of seeds of foxtail millet. Furthermore, the fluid-dynamic behavior of the seeds was evaluated in a conical spouted bed, which has advantages in terms of promoting the cyclic and regular movement of the seed particles. Dynamic parameters of spouting (minimum spouting velocity, stable and peak pressure drop) were determined and compared with those obtained from empirical correlations available in the literature. The results obtained from physical characterization showed that the seeds can be classified as belonging to Group D of Geldart, having a non-rough surface, mean diameter of 1.75 mm, and sphericity of 0.74. Fluid-dynamics analysis showed that the seeds are suitable for processing in a spouted bed, which is in agreement with the results of particle physical characterization.  相似文献   

3.
Norman Epstein   《Particuology》2010,8(6):536-538
The boundary condition, zero solids pressure at the top of a particle bed of maximum spoutable height, Hm, is shown to eliminate any resort to empiricism in the derivation of the fluid velocity in the annulus of a spouted bed for which both viscous and inertial effects are taken into account. The same boundary condition fails when applied to a spouted bed for which the bed height H 〈 Hm, especially when H 〈 0.8Hm.  相似文献   

4.
Fine particles play a significant role in many industrial processes. To study the dynamic behavior of fine particle and their deposition in rock fractures, the pneumatic conveying of fine particles (approximately 100 μm in diameter) through a small-scale horizontal slit (0.41 m × 0.025 m) was studied, which is useful for the sealing technology of underground gas drainage in coal mining production. The CFD–DEM method was adopted to model the gas-particle two-phase flow; the gas phase was treated as a continuum and modeled using computational fluid dynamics (CFD), particle motion and collisions were simulated using the DEM code. Then, the bulk movement of fine particles through a small-scale horizontal slit was explored numerically, and the flow patterns were further investigated by visual inspection. The simulation results indicated that stratified flow or dune flow can be observed at low gas velocities. For intermediate gas velocities, the flow patterns showed pulsation phenomena, and dune flow reappeared in the tail section. Moreover, periodic flow regimes with alternating thick and sparse stream structures were observed at a high gas velocity. The simulation results of the bulk movement of fine particles were in good agreement with the experimental findings, which were obtained by video-imaging experiments. Furthermore, the calculated pressure drop versus gas velocity profile was investigated and compared with relative experimental findings, and the results showed good agreement. Furthermore, the particle velocity vectors and voidage distribution were numerically simulated. Selected stimulation results are presented and provide a reference for the further study of fine particles.  相似文献   

5.
To study the influence of back feeding particles on gas-solid flow in the riser, this paper investigated the flow asymmetry in the solid entrance region of a fluidized bed by particle concentration/velocity measurements in a cold square circulating fluidized beds (CFB). The pressure drop distribution along the riser and the saturation carrying capacity of gas for Geldart-B type particles were first analyzed. Under the condition of u0 = 4 m/s and Gs = 21 kg/(m^2 s), the back feeding particles were found to penetrate the lean gas-solid flow near the entrance (rear) wall before reaching the opposite (front) wall, thus leading to a relatively denser region near the front wall in the bottom bed. Higher solid circulation rate (u0 =4 m/s, Gs = 33 kg/(m^2 s)) resulted in a higher particle concentration in the riser. However the back feeding particles with higher momentum increased the asymmetry of the particle concentration/velocity profile in the solid entrance region. Lower air velocity (u0 =3.2 m/s) and Gs =21 kg/(m2 s), beyond the saturation carrying capacity of gas, induced an S-shaped axial solid distribution with a denser bottom zone. This limited the penetration of the back feeding particles and forced the flnidizing air to flow in the central region, thus leading to a higher solid holdup near the rear wall. Under the conditions of uo = 4 m/s and Gs = 21 kg/(m^2 s), addition of coarse particles (dp= 1145 μm) into the bed made the radial distribution of solids more symmetrical.  相似文献   

6.
We applied the discrete element method (DEM) of simulation modified by an enlarged particle model to simulate bead motion in a large bead mill. The stainless-steel bead mill has inner diameter of 102 mm and mill length of 198 mm. The bead diameter and filling ratio were fixed respectively at 0.5 mm and 85%. The agitator rotational speed was changed from 1863 to 3261 rpm. The bead motion was monitored experimentally using a high-speed video camera through a transparent mill body. For the simulation, enlarged particle sizes were set as 3–6 mm in diameter. With the DEM modified by the enlarged particle model, the motion of enlarged particles in a mill was simulated. The velocity data of the simulated enlarged particles were compared with those obtained in the experiment. The simulated velocity of the enlarged particles depends on the virtual frictional coefficient in the DEM model. The optimized value of the virtual frictional coefficient can be determined by considering the accumulated mean value. Results show that the velocity of the enlarged particles simulated increases with an increase in the optimum virtual frictional coefficient, but the simulated velocity agrees well with that determined experimentally by optimizing the virtual frictional coefficient in the simulation. The computing time in the simulation decreases with increased particle size.  相似文献   

7.
Euler-Euler two-fluid model is used to simulate the hydrodynamics of gas-solid flow in a bubbling flu- idized bed with Geldert B particles where the solid property is calculated by applying the kinetic theory of granular flow (KTGF). Johnson and Jackson wall boundary condition is used for the particle phase, and different amount of slip between particle and wall is given by varying the specularity coefficient (φ) from 0 to 1. The simulated particle velocity, granular temperature and particle volume fraction are compared to investigate the effect of different wall boundary conditions on the hydrodynamic behavior, Some of the results are also compared with the available experimental data from the literature. It was found that the model predictions are sensitive to the specularity coefficient. The hydrodynamic behavior deviated sig- nificantly for φ = 0 and φ = 0.01 with maximum deviation found at φ = 0 i.e. free-slip condition. However, the overall bed height predicted by all the conditions is similar.  相似文献   

8.
A study was carried out on the attrition in conical spouted beds using two sands with different properties for several bed heights and gas flow rates. Furthermore, the influence of a draft tube was studied at ambient and high temperatures. The main objective was to acquire knowledge on the attrition of sand beds for biomass pyrolysis in a pilot plant provided with a conical spouted bed reactor. A first-order kinetic equation is proposed for sand attrition in a conical spouted bed at room temperature. The predicted attrition rate constant depends exponentially on excess air velocity over that for minimum spouting. Both the draft tube and temperature increase contribute to reduction of attrition.  相似文献   

9.
Fluidized bed agglomeration is an important and challenging problem for thermal cracking in fluid cokers. A low coker temperature can be problematic because the bitumen is injected into the fluidized bed with a different viscosity, resulting in formation of agglomerates of varying sizes, which slows the cracking reactions. In the present study, the bed material agglomeration process during nozzle injection of multiviscosity liquid was investigated in a fluidized bed operated at different mass ratios of the atomization gas to the liquid jets (GLR = 1%–3.5%) and gas velocities (3.9Umf and 5.9Umf) based on a conductance method using a water–sand system to simulate the hot bitumen–coke system at room temperature. During the tests of liquid-jet dispersion throughout the bed, different agglomeration stages are observed at both gas velocities. The critical amount of tert-butanol in the liquid jets that could lead to severe agglomeration of the bed materials (poor fluidization) at GLR = 1% is about 10 wt% at the low fluidizing gas velocity (3.9Umf) and 18 wt% at the high gas velocity (5.9Umf). This study provides a new approach for on-line monitoring of bed agglomeration during liquid injection to guarantee perfect contact between the atomized liquid and the bed particles.  相似文献   

10.
The behavior of the solid phase in the upper zone of a circulating fluidized bed riser was studied using a phase Doppler anemometer. Glass particles of mean diameter 107 μm and superficial gas velocities Ug covering the turbulent and the beginning of the fast fluidization regime were investigated. Three static bed heights were tested. Ascending and descending particles were found co-existing under all operating conditions tested, and at all measurement locations. Superficial gas velocity proved/happened to have a larger effect on descending particles at the wall and on ascending particles in the central region. Transversal particle velocities in both directions (toward the center and toward the wall) behaved relatively equivalently, with only slight difference observed at the wall. However, observation of the number of particles moving in either transversal direction showed a change in bed structure when increasing Ug. Furthermore, a balance was constantly observed between the core zone and the annulus zone where the mutual mass transfer between these two zones occurred continuously. Transition from a slow to a fast particle motion was accompanied by a transition to high levels of velocity fluctuations, and was found corresponding to the appearance of significant solid particle flow rate.  相似文献   

11.
The hydrodynamic behaviour of the spouted bed in the pharmaceutical industries has been found to be less addressed. The present paper has focused on the hydrodynamic characteristics of a spouted bed where the Cellets™ (Ph.Eur./USP) is adopted as the bed material. Experiments are carried out with three different static bed heights (H0) of shallow depth (2Di ≤ H0 < 3Di) using two different particle sizes. The spouted bed employed with Di/D0 of 5 has given the experimental information on external spouting (Ues) by mapping the pressure drop, and fountain height (Hf) against the superficial gas velocity (Ug) is represented with the image contours, which show the intrinsic behaviour. All the 1000 μm and 700 μm particles have been found to exhibit symmetric and asymmetric spouting. With increasing Ug, the fully suspended particles are limited to a certain height in the freeboard region due to the gas-solid cross-flow, which implies the clusters have identified with the image processing method.  相似文献   

12.
Using a high-viscosity Newtonian fluid, glycerol, an experimental investigation was carried out to evaluate the stable spouting regime in conical spouted beds using four particle mixtures: a reference (monoparticles), a binary mixture, two ternary mixtures with flat and Gaussian distributions respectively. The mixtures were selected for particle diameters (dp) ranging from 1.09 to 4.98 mm and particle diameter ratios (dpL/dps) ranging from 1.98 to 4.0. Experimental data show that pressure fluctuation signals of the bed, as indicated by changes in their standard deviations, provide suitable information to identify the range of operational conditions for stable spouting. However, the analysis of skewness of curves of pressure fluctuation as a function of air velocity appears not sufficient to identify a particular flow regime. For glycerol in the spouting regime, the standard deviation is noted to increase with increasing glycerol concentration due to the growth of interparticle forces. The implications of these research findings on the drying of suspensions in conical spouted beds using glass bead mixtures are also discussed.  相似文献   

13.
To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet, a cold model was developed for the integrated riser reactor combining the gas–solid distributor with the fluidized bed. Constraints, related to the gas–solid distributor and the upper fluidized bed, imposed on the particle flow in the riser outlet region, were investigated experimentally. The experimental results showed that with increasing superficial gas velocity, these constraints have strong influences on particle flow behavior, the particle circulation flux in the riser, and the height of the static bed material of the upper fluidized bed. When the constraints have greater prominence, the axial profile of the cross-sectionally averaged particle velocity in the outlet region initially increases and then decreases, the rate of decrease being proportional to the constraint strength. Along the radial direction of the outlet section, the region where the local particle velocity profile tends to decrease appears near the dimensionless radius r/R = 0.30 initially and then, with increasing constraint strength, gradually extends to the whole section from the inner wall. Based on the experimental data, an empirical model describing the constraint strength was established. The average relative error of the model is within 7.69%.  相似文献   

14.
Using a high-viscosity Newtonian fluid, glycerol, an experimental investigation was carried out to evaluate the stable spouting regime in conical spouted beds using four particle mixtures: a reference (monoparticles), a binary mixture, two ternary mixtures with flat and Gaussian distributions respectively. The mixtures were selected for particle diameters (dp) ranging from 1.09 to 4.98 mm and particle diameter ratios (dpL/dps) ranging from 1.98 to 4.0. Experimental data show that pressure fluctuation signals of the bed, as indicated by changes in their standard deviations, provide suitable information to identify the range of operational conditions for stable spouting. However, the analysis of skewness of curves of pressure fluctuation as a function of air velocity appears not sufficient to identify a particular flow regime. For glycerol in the spouting regime, the standard deviation is noted to increase with increasing glycerol concentration due to the growth of interparticle forces. The implications of these research findings on the drying of suspensions in conical spouted beds using glass bead mixtures are also discussed.  相似文献   

15.
The effect of solid particles on the flow characteristics of axisymmetric turbulent coaxial jets for two flow conditions was studied. Simultaneous measurements of size and velocity distributions of continuous and dispersed phases in a two-phase flow are presented using a Phase Doppler Anemometry (PDA) technique. Spherical glass particles with a particle diameter range from 102 to 212 μm were used in this two-phase flow, the experimental results indicate a significant influence of the solid particles and the Re on the flow characteristics. The data show that the gas phase has lower mean velocity in the near-injector region and a higher mean velocity at the developed region. Near the injector at low Reynolds number (Re = 2839) the presence of the particles dampens the gas-phase turbulence, while at higher Reynolds number (Re = 11 893) the gas-phase turbulence and the velocity fluctuation of particle-laden jets are increased. The particle velocity at higher Reynolds number (Re = 11 893) and is lower at lower Reynolds number (Re = 2839). The slip velocity between particles and gas phase existed over the flow domain was examined. More importantly, the present experiment results suggest that, consideration of the gas characteristic length scales is insufficient to predict gas-phase turbulence modulation in gas-particle flows.  相似文献   

16.
The hydrodynamics and energy consumption have been studied in a cold flow, bubbling and turbulent, pressurized gas–liquid–solid three-phase fluidized bed (0.15 m ID × 1 m height) with concurrent gas–liquid up flow is proposed with the intention of increasing the gas hold up. The hydrodynamic behaviour is described and characterised by some specific gas and liquid velocities. Particles are easily fluidized and can be uniformly distributed over the whole height of the column. The effect of parameters like liquid flow rate, gas flow rate, particle loading, particle size, and solid density on gas hold up and effect of gas flow rate, solid density and particle size on solid hold up, energy consumption and minimum fluidization velocity has been studied. At the elevated pressures a superior method for better prediction of minimum fluidization velocity and terminal settling velocities has been adopted. The results have been interpreted with Bernoulli’s theorem and Richardson–Zaki equation. Based on the assumption of the gas and liquid as a pretend fluid, a simplification has been made to predict the particle terminal settling velocities. The Richardson–Zaki parameter n′ was compared with Renzo’s results. A correlation has been proposed with the experimental results for the three-phase fluidization.  相似文献   

17.
Mars Exploration Rovers (MERs) experienced mobility problems during traverses. Three-dimensional discrete element method (DEM) simulations of MER wheel mobility tests for wheel slips of i = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99 were done to examine high wheel slip mobility to improve the ARTEMIS MER traverse planning tool. Simulations of wheel drawbar pull and sinkage MIT data for i  0.5 were used to determine DEM particle packing density (0.62) and contact friction (0.8) to represent the simulant used in mobility tests. The DEM simulations are in good agreement with MIT data for i = 0.5 and 0.7, with reasonable but less agreement at lower wheel slip. Three mobility stages include low slip (i < 0.3) controlled by soil strength, intermediate slip (i  0.3–0.6) controlled by residual soil strength, and high slip (i > 0.6) controlled by residual soil strength and wheel sinkage depth. Equilibrium sinkage occurred for i < 0.9, but continuously increased for i = 0.99. Improved DEM simulation accuracy of low-slip mobility can be achieved using polyhedral particles, rather than tri-sphere particles, to represent soil. The DEM simulations of MER wheel mobility can improve ARTEMIS accuracy.  相似文献   

18.
A downward flow of glass bead particles in a vertical pipe is investigated using a two-component LDV/PDPA for a range of Re (6400 < Re < 24,000) and a constant particle loading (m = 0.7). Two particle sizes of 70 and 200 μm are considered in the present work. For the 70 μm particles, the presence of the particles dampens the gas-phase turbulence intensity at the lowest value of Re investigated (8300) compared with the single-phase flow at the same Re. As Re increases, the gas turbulence increases, and for Re > 13,800 the gas turbulence is enhanced compared with the single-phase flow at the same Re. For the 200 μm particles, the intensity also increases with Re and is enhanced for all values of Re investigated, except at the lowest value of Re investigated (6400). At this value, the gas turbulence is equal to that of single-phase flow at the same Re. The observed trend in the gas-phase turbulence modulation with Re is proposed to be due to the change in the segregation patterns and in the average volume fractions of the particles with increasing Re. More importantly, the present experimental results suggest that, consideration of either the gas and particle characteristic length scales or the particle Reynolds number solely is insufficient to predict gas-phase turbulence modulation in gas–particle flows.  相似文献   

19.
The removal of volatile organic compounds by photocatalytic degradation is one of the safest and most effective ways of removing pollutants from the air. This process is highly affected by the type of reactor, light exposure, and hydrodynamics. For scale up purposes, continuous reactors with high capacity are required for treating large amounts of feedstock. In this work, two types of reactors based on different hydrodynamics, fluidized and spouted reactors, were designed to work under light irradiation inside the reactor. The efficiency of the reactors for volatile organic compound removal from high flow rates of air under Hg lamp irradiation using N–F-TiO2 photocatalyst was investigated. The performance of the fluidized bed and spouted bed were evaluated and compared at the same weight hourly space velocity of feed stream through the reactor. The results revealed that 80% of the initial acetaldehyde was removed in the fluidized bed after about 200 min, while in the spouted bed the acetaldehyde was totally removed after about 120 min.  相似文献   

20.
In this work, the mixing and segregation of binary mixtures of particles with different sizes and densities in a pseudo-2D spouted bed were studied experimentally. A binary mixture of solid particles including sand, gypsum, and polyurethane was used. To determine the particles mass fraction, and their mixing and segregation in the bed, an image-processing technique was developed and used. Important hydrodynamic parameters, such as the axial and radial segregation profiles of the solid particles, were measured. The effects of air velocity, particle size, and particle mass fraction were also evaluated. The flow regime in the spouted bed and the time required for reaching the equilibrium state of the solid particles were discussed. The results showed that the segregation of solid particles and the time to equilibrium both decreased when the air velocity increased to much larger than the minimum spouting velocity. The axial segregation increased with the diameter ratio of the particles. Upon completion of the test, coarse particles were concentrated mainly in the spout region, while fine particles were aggregated in the annulus region. Examination of the flow pattern in the spouted bed showed that the particles near the wall had longer flow paths, while those near the spout region had shorter flow paths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号