首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vertical slug flow is characterized by the rise of long bullet-shaped gas bubbles with a diameter almost matching that of the tube - Taylor bubbles. Liquid slugs separate consecutive Taylor bubbles, which may interact and coalesce if the distance between them is small. Slug flow has numerous industrial applications, being also observed on physiological and geological systems. In spite of the contribution of the development of non-intrusive experimental techniques to a deeper understanding of slug flow features, the complexity of this flow pattern requires the combined use of numerical approaches to overcome some of the optical problems reported in experimental methods, and other limitations related to the flow aperiodic behavior.The need to systematize the large amount of data published on the subject and to understand the limitations of the techniques employed constitutes the motivation for this review. In the present work, literature on vertical gas–liquid slug flow, with Newtonian fluids, from 1943 to 2015, covering theoretical, experimental and numerical approaches, is reviewed. Focus is given to single and trains of Taylor bubbles rising through stagnant and co-current liquids.It should be emphasized, however, that further research still needs to be conducted in some particular areas, namely the hydrodynamics of the liquid film surrounding the Taylor bubbles, the interaction between consecutive bubbles, and a more detailed approach to the flow of Taylor bubbles through co-current liquids.  相似文献   

2.
The interaction between Taylor bubbles rising in stagnant non-Newtonian solutions was studied. Aqueous solutions of carboxymethylcellulose (CMC) and polyacrylamide (PAA) polymers were used to study the effect of different rheological properties: shear viscosity and viscoelasticity. The solutions studied covered a range of Reynolds numbers between 10 and 714, and Deborah numbers up to 14. The study was performed with pairs of Taylor bubbles rising in a vertical column (0.032 m internal diameter) filled with stagnant liquid. The velocities of the leading and trailing bubbles were measured by sets of laser diodes/photocells placed along the column. The velocity of the trailing bubble was analysed together with the liquid velocity profile in the wake of a single rising bubble (Particle Image Velocimetry data obtained from the literature). For the less concentrated CMC solutions, with moderate shear viscosity and low viscoelasticity, the interaction between Taylor bubbles was similar to that found in Newtonian fluids. For the most concentrated CMC solution, which has high shear viscosity and moderate viscoelasticity, a negative wake forms behind the Taylor bubbles, inhibiting coalescence since the bubbles maintain a minimum distance of about 1D between them. For the PAA solutions, with moderate shear viscosity but higher viscoelasticity than the CMC solutions, longer wake lengths are seen, which are responsible for trailing bubble acceleration at greater distances from the leading bubble. Also in the PAA solutions, the long time needed for the fluid to recover its initial shear viscosity after the passage of the first bubble makes the fluid less resistant to the trailing bubble flow. Hence, the trailing bubble can travel at a higher velocity than the leading bubble, even at distances above 90D.  相似文献   

3.
The effects of co-current flows on a rising Taylor bubble are systematically investigated by a front tracking method coupled with a finite difference scheme based on a projection approach. Both the upward (the co-current flows the same direction as the buoyancy force) and the downward (the co-current moves in the opposite direction of the buoyancy force) co-currents are examined. It is found that the upward co-current tends to elongate the bubble, while the downward co-current makes the bubble fatter and shorter. For large Nf (the inverse viscosity number), the upward co-current also elongates the skirted tail and makes the tail oscillate, while the downward co-current shortens the tail and even changes a dimpled bottom to a round shape. The upward co-current promotes the separation at the tail, while the downward co-current suppresses the separation. The terminal velocity of the Taylor bubble rising in a moving flow is a linear combination of the mean velocity (UC) of the co-current and the terminal velocity (U0) of the bubble rising in the stagnant liquid, and the constant is around 2 which agrees with the literature. The wake length is linearly proportional to the velocity ratio (UC/U0). The co-currents affect the distribution of the wall shear stresses near the bubble, but not the maximum.  相似文献   

4.
A model is developed for the analysis of mass transfer during isothermal absorption in a vertical gas-liquid slug flow at large Reynolds numbers with liquid plugs containing small bubbles. Simple formulas for mass flux from the N-th unit cell of gas-liquid slug flow and for total mass flux from N unit cells are derived. In the limiting case the derived formulas for mass transfer during gas absorption in a slug flow with liquid plugs containing small bubbles recover the derived expressions for mass transfer in slug flow without small bubbles in the liquid plugs. Using the developed model recommendations concerning the design of the absorber operating in a slug flow regime are suggested. Received on 28 July 1997  相似文献   

5.
A computational analysis is carried out to ascertain the effects of steady and pulsatile co-current flow, on the dynamics of an air bubble rising in a vertical tube containing water or a solution of Carboxymethylcellulose (CMC) in water. The mass fraction (mf) of CMC in the solution is varied in the range 0.1%  mf  1% to accommodate zero-shear dynamic viscosities in the range 0.009–2.99 Pa-s. It was found that the transient and time-averaged velocities of Taylor bubbles are independent of the bubble size under both steady as well as pulsatile co-current flows. The lengths of the Taylor bubbles under the Newtonian conditions are found to be consistently greater than the corresponding shear-thinning non-Newtonian conditions for any given zero-shear dynamic viscosity of the liquid. In contrast to observations in stagnant liquid columns, an increase in the dynamic viscosity of the liquid (under Newtonian conditions) results in a concomitant increase in the bubble velocity, for any given co-current liquid velocity. In shear-thinning liquids, the change in the bubble velocity with an increase in mf is found to be relatively greater at higher co-current liquid velocities. During pulsatile shear-thinning flows, distinct ripples are observed to occur on the bubble surface at higher values of mf, the locations of which remain stationary with reference to the tube for any given pulsatile flow frequency, while the bubble propagated upwards. In such a pulsatile shear-thinning flow, a localised increase in dynamic viscosity is accompanied near each ripple, which results in a localised re-circulation region inside the bubble, unlike a single re-circulation region that occurs in Newtonian liquids, or shear-thinning liquids with low values of mf. It is also seen that as compared to frequency, the amplitude of pulsatile flow has a greater influence on the oscillating characteristics of the rising Taylor bubble. The amplitude of oscillation in the bubble velocity increases with an increase in the CMC mass fraction, for any given value of pulsatile flow amplitude.  相似文献   

6.
A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113×10–3 Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data.Symbols D internal column diameter (m) - g acceleration due to gravity (m s–2) - l w wake length (m) - Q v liquid volumetric flow rate (m3 s–1) - r radial position (m) - r * radial position of the wake boundary (m) - R internal column radius (m) - U s Taylor bubble velocity (m s–1) - u z axial component of the velocity (m s–1) - u r radial component of the velocity (m s–1) - z distance from the Taylor bubble nose (m) - Z * distance from the Taylor bubble nose for which the annular liquid film stabilizes (m) Dimensionless groups Re Reynolds number ( ) - N f inverse viscosity number ( ) Greek letters liquid film thickness (m) - liquid kinematic viscosity (m2 s–1) - liquid dynamic viscosity (Pa s) - liquid density (kg m–3)  相似文献   

7.
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas–liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10−3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas–liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.  相似文献   

8.
In this work, we present a numerical study to investigate the hydrodynamic characteristics of slug flow and the mechanism of slug flow induced CO2 corrosion with and without dispersed small bubbles. The simulations are performed using the coupled model put forward by the authors in previous paper, which can deal with the multiphase flow with the gas–liquid interfaces of different length scales. A quasi slug flow, where two hypotheses are imposed, is built to approximate real slug flow. In the region ahead of the Taylor bubble and the liquid film region, the presence of dispersed small bubbles has less impacts on velocity field, because there are no non-regular intensive disturbance forces or centrifugal forces breaking the balance of the liquid and the dispersed small bubbles. In the liquid slug region, the strong centrifugal forces generated by the recirculation below the Taylor bubble lead to the effect of heterogeneity, which makes the profile of the radial liquid velocity component sharper with higher volume fraction of dispersed small bubbles. The volume fraction has a maximum value in the range of r/R = 0.5–0.6. Meanwhile, it is usually higher than 0.35, which means that larger dispersed bubbles can be formed by coalescences in this region. These calculated results are in good agreement with experimental results. The wall shear stress and the mass transfer coefficient with dispersed small bubbles are higher than those without dispersed small bubbles due to enhanced fluctuations. For short Taylor bubble length, the average mass transfer coefficient is increased when the gas or liquid superficial velocity is increased. However, there may be an inflection point at low mixture superficial velocities. For the slug with dispersed small bubbles, the product scales still cannot be damaged directly despite higher wall shear stress. In fact, the alternate wall shear stress and the pressure fluctuations perpendicular to the pipe wall with high frequency are the main cause for breaking the product scales.  相似文献   

9.
10.
An experimental study of gas-liquid slug flow   总被引:6,自引:0,他引:6  
Experimental measurements were carried out for upward gas-liquid slug flow in a 50.8 mm diameter pipe. Parallel conductance wires were used to distinguish the Taylor bubbles and liquid slugs and to determine translation velocities and lengths, an electrochemical probe provided the magnitude and direction of the wall shear stress and a radio-frequency local probe was used for the axial and radial distribution of voidage in the liquid slugs. Data are reported over wide range of flow conditions covering slug flow and into the churn flow pattern. Comparison with the Fernandes model predictions are presented. Numerical simulation of slug flow provided information on the structure of flow in a liquid slug and, in particular, on the process of mixing behind a Taylor bubble.List of symbols D pipe diameter - f Taylor bubble frequency - F Gi (x) gas existence function for i-th liquid slug - g gravitational acceleration - l A distance for the wall shear stress reversal in a liquid slug - l B distance for the wall shear stress reversal in a Taylor bubble region - l LS length of a liquid slug - l TB length of a Taylor bubble - n number of samples in an ensemble - u axial velocity - U M superficial mixture velocity (U SG + USL) - U N translation velocity of the leading Taylor bubble - U NLS average translation velocity of liquid slugs - U NTB average translation velocity of Taylor bubbles - U OT overtaking velocity of the trailing Taylor bubble - U SG superficial gas velocity - U SL superficial liquid velocity - v radial velocity - w (y) velocity profile at the inlet to a liquid slug - x axial coordinate - y radial coordinate - void fraction - LS void fraction in a liquid slug - =l TB /(lTB + lLS) - density - surface tension - shear stress - saturation ratio, = w / g h - ensemble average  相似文献   

11.
The structure of vertical upward slug flow in a pipe is studied. The distribution of the phases in the Taylor bubble zone and the liquid slug zone is investigated by simultaneous measurements with two optical fiber probes. In the Taylor bubble zone the shape of the Taylor bubble and the distribution of the bubble length is reported. In the liquid slug region, the distribution of the void fraction is obtained over a dense grid in both the axial and radial directions. These experimental results shed some light on the hydrodynamics of the two-phase slug flow, in particular regarding the production of the dispersed bubbles and their distribution along the liquid slug.  相似文献   

12.
An experimental investigation on flow around an oscillating bubble and solid ellipsoid with a flat bottom was conducted. A single air bubble (equivalent diameter De=9.12 mm) was attached to a small disk (1 mm) at the end of a needle and suspended across a vertical square channel (100 mm) by wire wherein water flowed downward at a constant flowrate. The solid ellipsoid (De9.1 mm) was suspended across the square channel in the same manner. The equivalent diameter-based Reynolds and Eotvos number range, 1950<Re<2250 and 11<Eo<11.5, placed the bubble in the ‘wobbly’ regime while the flow in its wake was turbulent. A constant flowrate and one bubble size was used such that flow in the wake was turbulent. Velocity measurements of the flow field around the bubble or solid were made using a one CCD camera Digital Particle Image Velocimetry (DPIV) system enhanced by Laser Induced Fluorescence (LIF). The shape of the bubble or solid was simultaneously recorded along with the velocity using a second CCD camera and an Infrared Shadow Technique (IST). In this way both the flow-field and the boundary of the bubble (solid) were measured. The velocity vector plots of flow around and in the wake of a bubble/solid, supplemented by profiles and contours of the average and root-mean-square velocities, vorticity, Reynolds stress and turbulent kinetic energy, revealed differences in the wake flow structure behind a bubble and solid. One of the significant differences was in the inherent, oscillatory motion of the bubble which not only produced vorticity in the near-wake, but as a result of apparent vorticity stretching distributed the turbulent kinetic energy associated with this flow more uniformly on its wake, in contrast to the solid.  相似文献   

13.
The Characterization of the effects of surface wettability and geometry on pressure drop of slug flow in isothermal horizontal microchannels is investigated for circular and square channels with hydraulic diameter (D h ) of 700 μm. Flow visualization is employed to characterize the bubble in slug flow established in microchannels of various surface wettabilities. Pressure drop increases with decrease in surface wettability, while the channel geometry influences slug frequency. It is observed that the gas–liquid contact line in advancing and receding interfaces of bubble change with surface wettability in slug flows. Flow resistance, where capillary force is important, is estimated using Laplace–Young equation considering the change of dynamic contact angles of bubble. The experimental study also demonstrates that the liquid film presence elucidates the pressure drop variation of slug flows at various surface wettabilities due to diminishing capillary effect.  相似文献   

14.
The results from an experimental study of reduced-gravity two-phase flows are reported in this paper. The experiments were conducted in simulated reduced-gravity conditions in a ground-based test facility with a circular test section of 25 mm inner diameter. The flow conditions for which data were acquired lie in the dispersed droplet to slug flow transition and slug flow regime. Local data were acquired for 17 different flow conditions at three axial locations. The acquired data complement and extend those discussed in an earlier paper by the authors (Vasavada et al. in, Exp Fluids 43: 53–75, 2007). The radial profiles and axial changes in the local data are analyzed and discussed in this paper. The area-averaged data, in conjunction with the local data, are discussed to highlight important interaction mechanisms occurring between fluid particles, i.e., drops. The data clearly show the effect of progressive coalescence leading to formation of slug drops. Furthermore, the shape of slug drops in reduced-gravity conditions was observed to be different from that in normal-gravity case. The analyses presented here show the presence of drop coalescence mechanisms that lead to the formation of slug drops and transition from dispersed droplet flow to the slug flow regime. The most likely causes of the coalescence mechanism are random collision of drops driven by turbulence eddies in the continuous phase and wake entrainment of smaller drops that follow preceding larger drops in the wake region. Data from flow conditions in which the breakup mechanism due to impact of turbulent eddies on drops illustrate the disintegration mechanism.  相似文献   

15.
The transition from smooth to wavy stratified flow is studied for various pipe inclination angles with the aim to contribute to the realistic modeling and simulation of long distance two-phase pipe flow. The influence of the liquid flow field on interfacial structure is studied through local axial velocity measurements in the liquid phase in conjunction with other liquid layer characterization experiments. Observations based on fast-video recordings, are used to identify the main patterns of wave evolution. Liquid layer thickness time records are acquired using a parallel wire conductance technique from which mean layer thickness, RMS and power spectra of the fluctuations, as well as wave celerities are calculated. Laser Doppler Anemometry (LDA) is employed to investigate the flow structure in the thin liquid layer both with and without interfacial shear induced by a co-current gas flow. The results reveal the influence of the liquid flow field development on the interfacial structure. In particular, the new data of axial velocity profiles and liquid layer characteristics suggest that the onset of the interfacial waves is strongly affected by the liquid flow structure, possibly by the laminar to turbulent transition within the layer.  相似文献   

16.
给出一种垂直上升油-气-水三相弹状流压力降的计算模型。该模型考虑弹状流中Taylor气泡周围下降液膜的变化历程。通过油-气-水弹状流的实验研究发现,该模型的数值模拟结果与低压工况下的实验值符合得较好。本模型是计算垂直油-气-水三相弹状流中液相的连续相为水相时的压力降的有效方法。  相似文献   

17.
In order to develop the interfacial area transport equation for the interfacial transfer terms in the two-fluid model, accurate data sets on axial development of local parameters such as void fraction, interfacial area concentration, interfacial gas velocity and Sauter mean diameter are indispensable to verify the modeled source and sink terms in the interfacial area transport equation. From this point of view, local measurements of both group 1 spherical/distorted bubbles and group 2 cap/slug bubbles in vertical upward air–water two-phase flow in a large diameter pipe with 200 mm in inner diameter and 26 m in height were performed at three axial locations of z/D = 41.5, 82.8 and 113 as well as 11 radial locations from r/R = 0–0.95 by using four-sensor probe method. Here, z, r, D and R are the axial distance from the inlet, radial distance from the pipe center, pipe diameter and pipe radius, respectively. The liquid flow rate and the void fraction ranged from 0.0505 m/s to 0.312 m/s and from 1.98% to 32.6%, respectively in the present experiment. The flow condition covered extensive region of bubbly flow, cap turbulent flow as well as their transition. The extensive analysis on the radial profiles of local flow parameters and their axial developments demonstrate the development of interfacial structures along the flow direction due to the bubble coalescence and breakup and the gas expansion. The significant decrease in void faction and interfacial area concentration and the increase in Sauter mean diameter and interfacial velocity were observed when the gradual flow regime transition occurred. Finally, the net change in the interfacial area concentration due to the bubble coalescence and breakup was quantitatively investigated in the present paper to reflect the true transfer mechanisms in observed two-phase flows.  相似文献   

18.
Tomographic and time resolved PIV measurements were performed to examine the 3D flow topology and the flow dynamic above the upper surface of a low-aspect ratio cylinder at Re ≈ 1 ×  105. This generic experiment is of fundamental interest because it represents flow features which are relevant to many applications such as laminar separation bubbles and turbulent reattachment. At Re  ≈ 1 × 105, laminar separation bubbles arise on the side of the cylinder. Furthermore, on the top of the cylinder a separation with reattachment is of major interest. The tomographic PIV measurement, which allows to determine all three velocity components in a volume instantaneously, was applied to examine the flow topology and interaction between the boundary layer and wake structures on the top of the finite cylinder. In the instantaneous flow fields the tip vortices and the recirculation region becomes visible. However, it is also observed that the flow is quite unsteady due to the large separation occurring on the top of the cylinder. In order to study the temporal behaviour of the separation, time resolved PIV was applied. This technique allows capturing the dynamic processes in detail. The development of vortices in the separated shear layer is observed and in addition regions with different dominant frequencies are identified.  相似文献   

19.
A numerical study of the alteration of a square cylinder wake using a detached downstream thin flat plate is presented. The wake is generated by a uniform flow of Reynolds number 150 based on the side length of the cylinder, D. The sensitivity of the near wake structure to the downstream position of the plate is investigated by varying the gap distance (G) along the wake centerline in the range 0  G  7D for a constant plate length of L = D. A critical gap distance is observed to occur at Gc  2.3D that indicates the existence of two flow regimes. Regime I is characterised by vortex formation occurring downstream of the gap while for regime II, formation occurs within the gap. By varying the plate length and gap distance, a condition is found where significant unsteady total lift reduction can occur. The root mean square lift reduction is limited by an unsteady stall process on the plate.  相似文献   

20.
The flow around single Taylor bubbles rising in stagnant non-Newtonian solutions of polyacrylamide (PAA) polymer was studied using a technique employing simultaneous particle image velocimetry (PIV) and shadowgraphy. Solutions with different weight percentages of polymer, varying from 0.01 to 0.80 wt.%, were used to cover a wide range of flow regimes. The rheological fluid properties and pipe dimension yielded Reynolds numbers between 2 and 1160, and Deborah numbers up to 115. The shape of the bubbles rising in the different solutions was compared and quantified by fitting correlations. The flow around the nose of the bubbles was found to be similar for all conditions studied. Velocity profiles were measured and analysed in the liquid film around the bubbles. A comparison of bubble wake flow patterns was made. For the 0.10 and 0.20 wt.% PAA solutions, long wakes with a recirculation region were observed. Below the wakes, a flow of stretched liquid was found. Negative wakes were also observed for the more concentrated solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号